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ABSTRACT

The second AFSWC Hydrodynamic Conference was held at Kirtland Air

Force Base for the purpose of discussing numerical techniques which have

become an important and widely used tool for solving fluid flow problems.

A large number of the papers presented dealt with the problems of the finite

difference analogs of the differential equations of motion. A few papers

discussed work toward analytic solutions of these equations. Topics in-

cluded hydrodynamics, magnetohydrodynamics, radiation transport, and

solid material motion. (U)

The Proceedings are published in two parts: Part I is unclassified and

Part II is classified. (U)

PUBLICATION REVIEW

This report has been reviewed and is approved.

JOHN J. DISHUCK
Colonel USAF
Deputy Chief of Staff for Operations
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WELCOMING ADDRESS

Col David R. Jones
Chief, Physics Division, AFSWC

I would like to welcome you to Kirtland on behalf of General McCorkle,

the Research Directorate, and the Physics Division.

This conference can very well be considered as the second AFSWC

Hydrodynamics Conference. The first was held in March of 1960. At that

time we were primarily concerned with the X-ray effects of a nuclear burst,

and needed to arrive at new levels of common understanding before embarking

on an integrated large-scale in-house and contractual research program.

This year we are not concerning ourselves with an individual program,

but are attempting to discuss one aspect of a number of the Physics Division's

programs. This aspect is hydrodynamics. We have.chosen to concentrate on

numerical methods and techniques of hydrodynamics, but have included some

topics dealing with the physics involved and with non-numerical methods of

solution to these problems.

The overall purpose of this meeting should be toward the exchange of

methods and techniques of approaching and solving various problems. We

hope that the idea of a working meeting can be kept in mind and that impromptu

discussion of unresolved topics will flow freely.

Again, I repeat my welcome to Kirtland, and offer our services to you.

xiii
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ON THE TREATMENT OF RAREFACTION

USING A DISSIPATIVE HYDRODYNAMICS CODE

Gunning Butler, Jr. , and Daniel M. Young

Boeing Airplane Company

One of the methods being used to study the response of materials to the

X-ray impulse is slapping the material with a thin flying plate. The Boeing

group working on this problem is accelerating the flyer plates by discharging

a condenser bank through a thin metallic foil and using the pressure de-

veloped in the exploded foil to accelerate the flyer. After the plate has moved

a sufficient distance it is essentially at initial density and moving with con-

stant velocity. When the plate impinges on the target material, a square

pressure pulse is generated in the material with a width equal to the time for

the resulting shock to travel back through the flyer plate and the rarefaction

from the free surface to travel back to the contact surface. As the shock

progresses into the target material it will develop into a normal triangular

shock because of rarefactions from the surface relieving the back of the pulse

and degrading the peak pressure.

In order to understand the details of these processes and the subsequent

details of the flow, a hydrodynamic code was developed at Boeing. The code

is based on the Richtmyer-Von Neumann method and the details of the code

are reported in the proceedings of the Air Force Special Weapons Center

Hydrodynamics Conference (AFSWC TR-60-1Z) which was held here about a
3

hear ago.

The manner in which a dissipative hydrodynamics code such as that of
1 2

Von-Neumann and Richtmyer or Ludford, Polachek, and Seeger handles

one-dimensional shocks is well established and fully reported in the litera-

ture. The usual set of basic difference equation is

n + / n- n n -W n n
U_ -O P_ + + Qj + W - P J -" Q-

tn 0Aa

n + 1 n n + l
E + / E + n + n + V (V +

At At



TN-61-29

n+1 n n+ 1 /2 a +l/z

Vj + 1/2 - Vj + 1/2 Uj + 1 U
po =

At Aa

and an equation of state

n+ 1 n+ 1 n+ 1
P j + 1/2 = f (Ej + i/a' Vj + 1/

For reference, the pertinent phenomenological features are shown in figure 1,

which is a synoptic view of a shock in terms of fluid particle velocity as cal-

culated by the Boeing hydrodynamics code and compared with the idealized

shock in a perfect fluid. The independent variable here is the Lagrangian

coordinate. One notes the spreading of the shock front by the code and the

oscillations or ripples induced in the flow after passage of the shock. Figure

2 shows the pressure time history of a mass-zone after the shock has passed.

It is well known that as the dissipation terms in the equations are increased in

magnitude, the amplitude of the oscillations is decreased and the shock thick-

ness is increased.

Originally it was decided to start the calculations by dumping the energy

based on the measurements of the current and voltage versus time into the

foil. However, it was not possible to treat this situation with sufficient

accuracy. The results of dumping the energy into the foil are extremely

sensitive to the equation of state of the foil. A series of runs was done in

which the foil was treated as an ideal gas and the peak pressures and peak

free-surface velocities varied quite widely with a small change in gamma.

This effort was then dropped because of lack of knowledge of the foil equation

of state. At the present time the input is taken as the flyer plate at normal

density and constant velocity at the time it impinges on the target, because

measurements of the flyer plate velocity are readily measurable and quite

reproducible. Also by using the flyer plate in motion as input, the equation

of state of the foil need not be known and only the equation of state of the flyer

over a relatively small pressure range is required.

The Boeing group is particularly interested in the mechanism of spall.

Spall occurs Nhen a material is in tension. For this reason it is important

to know how a Von-Neumann-type code treats rarefactions. If these codes do

not handle rarefactions properly then there are problems in determining the

location of the maximum tension and its absolute magnitude. For this reason

2
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a series of numerical experiments on centered rarefactions has been conducted

at Boeing. Mr. Daniel M. Young will now present the results of these studies.

At the suggestion of Dr. John G. Trulio of the Lawrence Radiation Lab-

oratory, Livermore, the Boeing group has undertaken what can best be de-

scribed as a series of numerical experiments on simple centered waves using

the Boeing hydrodynamics code. The treatment of these types of flow by such

codes is of some interest, but does not seem to have been reported in the

literature, at least in the available recent and near-recent sources. For

normal materials, simple centered waves are rarefactions and are repre-

sented by similarity solutions of the equations of motion; i. e. , the equations

are reduced to a set of ordinary differential equations which can be integrated

by standard methods. For certain equations of state such solutions are ex-

pressable in closed form.

Simple centered waves are of interest primarily because they occur

frequently as integral parts of more complicated flow fields which require

a hydrodynamic code for solution. The manner in which a code handles

simple centered waves in cases where the solution is known should be in-

dicative to some extent of the error introduced in the more complicated

flows which include them. This is particularly important when one is trying

to look at spall which is largely determined by crossing rarefactions. The

exact similarity solution representing a simple centered wave is presented

in figure 3 which is a synoptic view of a rarefaction moving into a medium at

rest. The material in this case has a Hooke's law equation of state. Both

pressure and particle velocity are shown as functions of the Lagrangian co-

ordinate.

If the dissipation terms in the above set of difference equations are set

to zero and the same problem is calculated with the hydrodynamics code, the

results are those shown in figure 4. The features contrasting the analytical

and code solutions are the overshoot in the flow behind the wave and the

spreading of the wave over too wide a region. If the dissipation terms are

included in the calculation, the amplitude of the overshoot is markedly de-

creased but the spreading is increased, as is indicated in figure 5 which

shows the rarefaction wave both with and without dissipation. As in the case

of shock compressions, increasing the magnitude of the dissipation terms

enhances these effects. That this should be the case also for rarefactions is

3
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not altogether obvious, since for such flows the Von Neumann-Richtmyer

dissipation is negative. The inclusion of such terms, therefore, corresponds

to a physically unreal situation, since a negative dissipatio-i implies violation

of the second law of thermodynamics. It should be recalled, however, that

the dissipation terms were originally introduced into the equations only as a

mathematical device, not as an attempt to simulate physical reality. The

magnitude of these terms required to allow the shock calculation to proceed

is greatly in excess of the real physical magnitude.

Figure 6 is a wave diagram in Lagrangian coordinates of the development

of a simple centered wave from a pressure discontinuity as computed by the

hydrodynamics code without dissipation. It resembles somewhat grossly the

early history of the development of a shock compression from a pressure

discontinuity, shown for comparison in figure 7. The effect of the dissipation

term is shown by the wave diagrams of figure 8. The parameter C is the

constant in the Richtmyer-Von Neumann dissipation term. Comparison with

the wave diagram of the analytical solution indicates that, as calculated by

the code, the head of the wave initially propagates too quickly and the tail

too slowly. Finally the wave settles down to a stable fan-shaped structure

with all parts traveling at their correct speeds. The center of the wave

seems to travel at the right speed from the beginning.

There seem, then, to be two problems associated with the treatment of

simple centered waves by dissipative-type hydrodynamic codes: (1) there is

a spurious overshoot and subsequent decaying ripple induced on 'he flow

following the wave, which if the dissipative terms are small or ignored

completely, can be of significant magnitude; and (2) the trajectories of the

head and tail of the wave are incorrect because they are initially of the wrong

slope, a situation aggravated by increasing the dissipation.

Inspection of the details of the difference equations at the contact surface

across which the pressure discontinuity originally exists leads one to suspect

that some of the difficulty is the result of the way in which the velocity of

that surface is computed. The usual difference equation for the velocity of

a mass zone boundary is

4
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_ + n /2 - J-I/ J-I/2

n
At p0 Aa

where the nomenclature is essentially that of Von Neumann and Richtmyer.

The customary way of handling a surface is to use this same form of differ-

ence equation. Letting Pb denote the outside pressure on the boundary, the

equation for the velocity of the surface is

u n+ 1/2+ _ n-1/P n + Qn- 1/2

b b = Pb-1/z + b-1/2 -Pb ()

Atn /2Po Apa

where the boundary has been assumed to be on the right.

Actually the right hand side of the above equation (*) represents the

secant centered one quarter of a mass zone from the surface. For simplicity

consider the case where Pb is zero. Then according to () the pressure in

the first zone adjacent to the surface must be completely relieved before the

acceleration of the surface will cease. Thus the velocity of the surface will

overshoot, a tension will develop to slow it down, etc. This effect will then

propagate along with the tail of the wave. The early history of the surface

velocity is shown in figure q. It is interesting to note that when dissipation

is included, the magnitude of the initial overshoot is decreased as it should

be according to ('), since the dissipation term will always be opposite in

sign to the pressure difference for a rarefaction wave.

When, in the hydrodynamics code, the rarefaction is initiated by the

reflection of a shock wave from a free pressure boundary, it is not a simple

centered wave. The structure of the shock prevents the wave from being

centered. This is shown in figure 10, which is a wave diagram in Eulerian

coordinates of this process. However, since the resulting wave is not

centered, it is not liable to such violent overshoots in its formative stages

and one of the problems has been alleviated. The cost however, is a larger

error in the trajectories of the head and the tail.

5
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The effect of such errors in a rather simple problem is illustrated in

figure 11. The problem is that of an unstrained flyer plate impacting against

a semi-infinite slab of identical material. The quantities of interest are the

distance and time at which the rarefaction overtakes the shock, and the

trajectory and shape of the subsequently decaying shock pulse. The sort of

error that is prone to occur is too short a catch-up distance after which the

pulse calculated by the code continues to fall behind because of its early loss

of driving pressure. The effect of some of the program parameters upon the

results is shown in figure 12. The parameter to which the catch-up distance

is most sensitive is the dissipation constant C. The reason is, as has been

shown, that the smaller the dissipation the more accurately localized are

the waves. However, simultaneously the amplitudes tend to become rather

ill-defined because of the overshoots and subsequent oscillations in the flow

regions immediately following the waves.

It seems, then, that some care should be taken in interpreting the results

of problems calculated with dissipative hydrodynamics codes when simple

centered waves are features of the resulting flows. In particular, tension

regions following rarefactions should be examined by an independent method

to establish their validity. Also, if possible, catch-up distances should be

checked.

6
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-- ANALYTICAL SOLUTION

Figure 10. Rarefaction caused by shock reflection

at a free pressure boundary
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ANALYTIC METHODS AND APPROXIMATIONS OF MHD PROBLEMS

Dr. J. D. Cole

California Institute of Technology

and

Dr. C. Greifinger

The RAND Corporation

I. INTRODUCTION.

In recent years, largely because of the interest in controlled thermo-

nuclear reactions, many devices have been designed to accelerate gases to

thermonuclear energies (-10 key). In the operation of most of these devices,

the gas is driven electromagnetically, it being possible in this manner to

achieve much higher gas velocities than by mechanical or gas-dynamic means.

In the usual mode of operation, electrical energy, stored in a charged

capacitor, is delivered to the apparatus containing the gas. The gas is

rapidly broken down by the applied voltage, and currents flow through it. A

magnetic field is thereby generated which interacts with the currents in the

gas and sets the gas into motion. Generally, the currents are confined to a

rather thin sheet at the boundary of the gas. The magnetic field then acts as

a piston, pushing the boundary inward and leaving behind a region of vacuum.

The boundary is preceded by a shock wave which compresses, ionizes, and

sets into motion the enveloped gas.

To analyze quantitatively the operation of such devices, it is obviously

necessary to make a number of simplifying approximations, the most common

of which are the following:

(a) idealization of the geometry of the apparatus,

(b) idealization of the physical properties of the gas,

(c) neglect of the reactiot of the gas on the external circuit, and

(d) idealization of the mechanical properties of the gas.

The geometrical idealization always involves the neglect of end effects

and occasionally involves other idealizations, one of which will be illustrated

below in the analysis of the inverse pinch. Such approximations do not

usually impose serious limitations on the validity of the analysis, but merely

limit that validity to some, usually large, portion of the apparatus.

Z0
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The idealization of the physical properties of the gas generally consists

in the assumptions that the plasma is a nonviscous, non-heat-conducting,

ideal gas and that it has infinite electrical conductivity. These approxima-

tions limit the validity of the analysis to some range of operating conditions;

fortunately, under normal conditions, the devices to be discussed operate

well within the necessary range. This point is best illustrated by considering

in some detail the assumption of infinite conductivity.

The infinite conductivity approximation is equivalent to the assumption

that the currents in the plasma are confined to an infinitely thin sheet on the

boundary which excludes the driving magnetic field from the plasma.

Actually however, because of the finite conductivity of the plasma, the field

diffuses into it. The diffusion distance 6 at a time t is roughly

S /2(1)
J.LO

where o is the conductivity of the gas and t the permeability of free space.

For a shock of roughly constant speed c, the separation A of the shock

and the current carrying contact front is

A (c - u)t (2)

where u is the speed of the contact front. The density ratio across the shock

is

P=1 u - (3)
P c y+ 1

where the last equality holds for a very strong shock in a perfect gas (y is

the usual ratio of specific heats). For a real gas (with partial dissociation

and ionization), (y - 1)/(y + 1) > 1/15, so that

iA ct. (4)

The approximation should be valid so long as (taking an average for A

_ - 10 (_.L.4 V  1 . (5)
A c jd

If this is to apply to a shock traveling a distance D, than t - D/c and

.~ 10 (6)

(o Dc)
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Thus, a magnetic Reynolds number RM based on the dimensions of the

device and the shock speed must be fairly large,

RM = pcDc > 100, (7)

say. As a typical case, for a Mach 20 shock (l0-ev temperature) progressing

through cold deuterium c - 4 x 104 m/sec and d - 6 x 104 mho/m, so that

the inequality required by equation (7) Is well satisfied for dimensions D

greater than about 2 inches. The relevant dimension of all the devices to be

discussed is at least this large, so that the approximation may be expected

to apply rather well.

The approximation of neglecting the reaction of the gas on the external

circuit is effected by replacing the external circuit by a boundary conaition.

That is, the current through the gas, and hence the driving field, is taken to

be some prescribed function of time, and the dynamical equations of motion

are solved subject to this boundary condition. This o'ssumption limits the

validity of the analysis to the time during which the prescribed current can

be maintained experimentally - usually not the entire period of operation.

It also involves a considerable loss of detail, such as, for example, the

division of energy at arbitrary times between magnetic field and mechanical

motion. If a detailed description of such physical quantities is desirable fol

design or diagnostic purposes, the reaction must obviously be taken into

account.

The final approximation, that of idealizing the mechanical properties of

the gas, consists of replacing the full fluid dynamic equations by a single

equation based on some simplified mechanical model. One such model in

current use, the snowplow model, will be discussed below. Such idealizations

have the advantage of allowing a rather simple calculation of the gross dy-

namics of the gas enveloped by the shock. However, an analysis based on

this kind of simplification is clearly not capable of providing the detailed

description of the flow which is contained in a solution of the full equations.

The latter, unfortunately, cannot usually be solved analytically.

Of the assumptions discussed above, the first two are essentially un-

avoidable if any analytic results are to be obtained. Of the last two, at least

one must be made for the analysis to be tractable. If both (c) and (d) are

assumed, the analysis may become particularly simple while still yielding
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results which are quite adequate for many purposes. However, if quanti-

tative information is needed concerning the interrelation between gas and

circuit, the reaction of the gas must be included. The desired results may

then be obtained with somewhat more effort. Finally, there are special

cases where similarity solutions of the full fluid dynamic equations can be

obtained describing the flow in complete detail. To obtain these solutions,

it is again necessary to replace the external circuit by a boundary condition.

Moreover, the form of the boundary condition is no longer arbitrary; it is

determined by the form the solution must take.

Of course, in addition to the approximations described above, which are

of a more or less general nature, there are also those which are specific to

a particular device.

The points discussed above will now be illustrated by specific examples.

II. SNOWPLOW THEORY WITHOUT CIRCUIT REACTION.

As mentioned in the Introduction, the greatest analytical simplification

results when assumptions (c) and (d) are both made. A particularly useful

mechanical simplification is the so-called snowplow model, which was first

applied by Rosenbluth to the ordinary pinch effect. It is assumed, in this

model, that all the mass swept up by the shock is compressed into an in-

finitely thin layer immediately behind the shock, so that the contact front

and shock are the same interface. The motion of the interface is determined

from the principle that the time rate of change of momentum of the accumu-

lated mass is equal to the force on the interface.

It is interesting to note that snowplow theory can be derived from the full

gas-dynamic equations as the limit shock strength-----o, specific heat ratio
2

-1. This limit is called Newtonian theory The model should therefore

be a valid approximation for strong shocks in gases in which ionization and

dissociation are taking place, since the additional degrees of freedom pro-

vided by these processes result in a specific heat ratio which approaches

unity. It is clear that under these conditions the compression (y + 1)/(y - 1)

becomes very large, as required by the theory.

In the devices to be analyzed below, the flow is approximately one-

dimensional; that is, the location of the shock at a time t is describable by a

single coordinate, X(t). If the mass of gas which has been swept up by the
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shock is denoted by M(t), the basic equation of snowplow theory can be

written

(M(8)
dt dt

where F is the force on the interface. This equation will now be used to
3 4analyze the two devices known as inverse pinch and Scylla

A) Inverse pinch

A diagram of the apparatus for this device is shown in figure 1. A current

is passed through the gas and returns along the central conducting rod. This

current produces an azimuthal magnetic field which pushes the gas away from

the rod, leaving behind a cylindrical vacuum region. In such a device, the

gas can be pre-ionized, and an axial magnetic field produced by an external

solenoid can be trapped in the plasma region. The resulting shock wave will

then be a transverse magnetohydrodynamic one. This more general case

will in fact be considered.

The additional geometrical idealization will be made of replacing the

central rod by a line. This is done first because an exact solution of the re-

sulting equation can then be obtained, but mainly so that a comparison can be

made with the similarity solution of the same problem. In practice, the

solution thus obtained should become a good approximation to the flow at

distances from the rod of several times its radius.

If the plasma is initially at a uniform pressure p0 and density po,

and in a uniform axial magnetic field of strength B O, the accumulated mass
per unit length of the sheath is

M =r p X, (9)

where X is the distance of the sheath from the axis, while the net outward

pressure on the sheath is (inks units)

p= 0 o 0 Po 0 Po (10)2  8 2 2 P

The first term on the right hand side of equation (10) is the magnetic pressure

of the aximuthal field B0 produced by the pinch current I, while the second

term is the magnetic pressure of the external field.
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SCHEMATIC DIAGRAM OF APPARATUS

Electrode_____ ____

Current SheetB

(Magnetic Piston)I

-To Pump L~b

~ Shock

Electrode______ ____

-insulator

Center Conductor

~- Spark Gap

Capacitor

Figure 1. Diagram of apparatus for inverse pinch
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It is now necessary to make some assumption concerning the form of

I(t). Although under typical experimental conditions the current is usually

sinusoidal, the ringing time of the circuit can be made sufficiently long that

the current rises linearly over a large portion of the time of interest. If one

then assumes a linear pinch current, I = 1° wt, and introduce as parameters

the sound speed ao = (T po/Po ) and the Alfve'n speed bo = (Bo0/hLPo)
equation (8) with F = 2TtXp becomes

iXd = c4 X(b 2- a 2) (11)
dt t o X 0 o

where

c 0 ( 1o2 W2 /4n 2 P)/4 (12)

is a characteristic quantity with the dimensions of a speed. The solution of

equation (12) which passes through X(o) = 0 is

X =kt, r 24
k _(bo 2 + ao) + (bo + Ia 2 + 8 co ) (13)

Thus, according to the theory, the front moves with the constant speed

d& = k.
dt

In the limit of strong shocks, where the snowplow theory should give

reasonably accurate results, a /c # 1; and b /c << 1; equation
0 01<0 0(13) becomes k 2 +Z 1 (14)

kZ-I/ 4 c°

From equation (14) and the definition of c the scaling laws for the device are

obtained; the shock speed scales as the square root of the rate of current rise

and inversely as the fourth root of the density. A comparison of the snowplow
12

result (for a = b = 'o) with experiments of Liepmann and Vlases is shown0 0
in figure 2. The agreement is goDd indeed, verifying the scaling law with

respect to both current rise and initial density.

In addition to providing the scaling laws for the device, the theory also

provides a fair idea of the shock speeds to be expected under typical ex-

perimental conditions. For example, if the working gas is deuterium at
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SUMMARY OF PRESSURE PROBE DATA

10
Snowplow Theory: r =Vt

F4 Q2 W 4 1/4

8 ~ ~~~ - r __ ____O___

6

r, cm.

4
0 Gas Po c, observed

o o 0(mm. Hg) (cm./4 sec.) (cm./ sec.)

2 o Argon 0.5 1.75 1.6
00 5 * Helium 0.5 3.12 3.1

/ * Air 0.5 1.90 1.9
/ * Air 0.2 2.50 2.6

0 2 4 6, 8 10 12

Figure Z. Comparison of snowplow theory of inverse pinch

with experiments of Liepmann and Vlases
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100-L initial pressure and if the rate of current rise is Z50 ka/p.-sec, the

predicted shock speed is about 9 cm/ L -sec, again in good agreement with

experiment.

Finally, although the theory provides no information about the detail of

the flow, the internal energy in the gas may, within the framework of the

theory, still be calculated. This is the energy which is available to heat,

dissociate, and ionize the gas. The total energy per unit length, E(t), de-

livered to the gas in the time t is just the work done on it by the magnetic

piston, i. e.,

X(t) X(t)

E(t) = FdX= d (Mdt) dX
fdt dt

0 0

X

M -4 / d Z X dX (15)

dt dt 2

0

With the aid of equation (8) the last integral can be transformed to

X M 2

M d X = E(t)- (d) dM (16)

dt 2  o

so that finally M

EMt) Mo + I dX dM .( 7
2 Mdt f d M(7

0

The first term on the right-harld side of equation (17) is the kinetic energy of

the gas; the second term is the internal energy. Internal energy is thus

acquired at the rate of I ()2 per unit mass. (The dissipative mechanism

responsible for the production of internal energy is the shock wave. ) The

internal energy at any time depends on the history of the motion to that time,

whereas the kinetic energy depends only on the velocity at that instant. When,

as in the case under consideration, the velocity d is constant, the in-

dt

Z8



TN-61-29

tegral in equation (17) is trivially evaluated, and the internal energy is

evidently just equal to the kinetic energy. In such cases, then, there is

exact equipartition between kinetic and internal energy.

B) Scylli
In this device, shown in figure 3, the external circuit drives a circum-

ferential current around the outside of the cylindrical discharge tube. When

the switch is closed, the rising current induces an electric field which drives

a surface current around the gas, opposite in direction to the primary current.

The resulting magnetic field is axial, and drives the gas radially inward from

the wall. As in the case of the inverse pinch, such a device can be used to

generate magnetohydrodynamic shock waves if the gas has been pre-ionized

and an axial field established in it prior to the discharge. This will again be

the case considered.

If the azimuthal current per unit length is denoted by I. the driving axial

field is uniform between the current sheet and the outer wall, and is given by

Bz = A, (18)

and the snowplow equation of motion becomes

dt 0 dt = 2 2 °

where X(t) is the radius of the current sheet and X is the radius of the tube.
0

The other quantities are defined as before, and the equation is to be solved

with the boundary condition X(o) = Xo

An analytic solution of equation (19) can be obtained if it is assumed that

the current i(t) rises instantaneously from zero to a constant value i1 . (This

can be approximated fairly well in practice if the external inductance is made

sufficiently small. ) The desired solution of equation (19) is then

X= Xo -k t (20)
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SCYLLA TYPE DEVICE

CONTAINER

Figure 3. Diagram of apparatus for Scylla
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where

2-1/2c 
1bo 2 02 li/2

k 1 1 -- " 2

L c 1  c 1

and

( 1 
2 ) 1/2 (2

1ic, = (P0(22)

is the characteristic speed for the device.

The result of the theory, then, is that the gas moves radially inward with

the constant speed d = k It is interesting to note that the speed is in-
dt V

dependent of the dimension X of the apparatus. Moreover, the scaling laws
o

are once again obtained; the shock speed scales linearly as the current per

unit length and inversely as the square root of the density. Once again

typical shock speeds can be estimated; for deuterium at an initial pressure

of 100-4 and currents of about 106 amps/ni, shock speeds of about 25-30

cm/p-sec are to be expected. Finally, the internal energy may be calculated

just as in the case of the inverse pinch; here again there is equipartition of

energy.

An analysis of the operation of either of the above devices for other forms

of the driving current in general requires a numerical integration of the

snowplow equation. The same is true if the solution of the inverse pinch is

desired near the central rod.

III. SNOWPLOW THEORY WITH CIRCUIT REACTION.
As mentioned in the Introduction, it is desirable for many purposes to

have a detailed description of the interchange of energy between source and

device, the division of energy between magnetic field and mechanical motion,

etc. When this is the case, the analysis must be modified to include the re-

action of the gas back on the energy source. This modification makes it

necessary to replace the single equation of motion of the last section by two

coupled equations, one equation for the electric circuit and the other for the

mechanical system. A detailed analysis of this type has been carried out
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for the ordinary pinch by Killeen and Lippman.

As circuit elements, the devices in question are essentially variable

inductances which, under normal operating conditions, can be considered to

be connected simply in series with the energy source. 5 The inductance of

the device at any instant depends on the location of the plasma boundary, and

it is this dependence which couples the electric circuit and the mechanical

system. If the inductance of the device is denoted by Li(t), and the external

source is taken to be a capacitor of capacitance C in series with an (un-

avoidable) inductance L , the circuit equation becomes
e

dt + Li)dt+g 0 (23)

where Q(t) is the charge on the capacitor. If the initial pressure of the gas

is neglected, the rate at which mechanical work is done on the plasma is

dL.W =t (d ) -t (24)

so that the snowplow equation of motion (8) becoxpes

d (M dX dLi 2 (25)
dt dt 2 dX dt

The system is thus described by the two coupled equations, (23) and (25).

In these equations, dissipation in the resistance of the walls of the device and

in resistance in the external circuit has been neglected. Such dissipation

could easily be included but in practice is usually small. The main dissi-

pative mechanism, the shock wave, is included however.

These equations will now be applied to the analysis of a specific device.

MAST (Magnetic Annular Shock Tube 6

This device (figure 4) is also called a linear plasma accelerator. The

gas is contained between two coaxial electrodes which are connected to the

external circuit. When the switch is closed, the gas breaks down near the

end of the tube and a radial current flows in a thin disk between the inner and

outer cylinders. The discharge current gives rise to an azimuthal magnetic

field which pushes the current disk down the tube. The disk sweeps up the

gas ahead of it, leaving vacuum behind.
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LINEAR PLASMA ACCELERATOR

XPt

LeL

LL:IX Mp AX

X

Figure 4. Diagram of apparatus

for linear plasma accelerator
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Other devices for the linear acceleration of plasma, in which the mass of

accelerated gas could be considered constant, have been analyzed by various
7,8,9

authors 7 along these same lines. These analyses differ from that pre-

sented below mainly in that they do not contain the mechanism of shock dissi-7
pation. One treatment, however, does take into account electrical resis-

tance. The device considered here has been discussed by Dattner whose

treatment, however, is somewhat inconsistent in that it is assumed that the

internal energy of the gas is always some fixed fraction of the kinetic energy.

It is clear from equation (17) that this is not generally the case.

If X(t) denotes the distance of the current disk from the end of the tube,

the inductance of the device is

L.(t) = .1 X(t) (26)

where
dL. d

--U-- 1 n (27)
- dX =  it d1

is the inductance per unit length, d1 and d2 being the inner and outer dia-

meters, respectively. Furthermore,

M(t) = p 0 A Xt) - m X(t) (8)

where A is the area of the annulus, so that m as defined by equation (28) is

the mass per unit length of the tube. If the initial charge on the capacitor is

Qo the equations of motion must now be solved subject to the boundary

conditions.

Q(O) = Qo, Q(O) = 0, x(O) = 0. X(O) = 0 (29)

A study of the problem in dimensionless variables shows that the

operation of the device can be described in terms of a single parameter.

If one introduces as dimensionless variables

x = _k X (length)
L e

_ . (time) (30)
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q = / Q (charge)

e

the equations of motion become

d [(I + x) dg]+ q = (31)

2l (x da) (da (32)
dr Xd) d

and the initial conditions are
q 1 3/Z

= x(O) k(0) = 0
The equations and boundary conditions thus contain the single parameter qof

the ratio of the initial charge on the capacitor to the characteristic charge for

the system. The time-dependence of all nondimensional variables is therefore

determined, once the value of this single quantity has been specified.

A general analytic discussion of the system (31) and (32) presents formid-

able difficulties. However, some general remarks can be made. For very

small times, x << 1, that is, the inductance of the device is small compared to

the external inductance. The external circuit is thus essentially shorted

through the device and starts to ring at its natural frequency. From the re-

sulting driving force, the initial motion of the gas is readily calculated. For

x << 1, the solution of the circuit equation is

q" q cos -, (34)
and with this as the driving term, the solution of the mechanical equation is

x = .- sin2  /)  (35)
iT)

This initial phase of the system can persist for a considerable time if

% is made sufficiently small. Since a small qo implies a weak driving force,a
the condition x << 1 can then be satisfied to values of r > > 1, in which case

the velocity of the front d . If r becomes too large, however, this

initial description breaks down and a period of strong coupling occurs.

Ultimately, however, the driving force (d)2 must become small; the gas
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will then decelerate while conserving its momentum. Thus, in the final

phase

x ~(36)

The varying inductance now "drives" the external circuit, the equation for

which becomes

d k 0 (37)

The asymptotic solutton of equation (37) for large times is

q -t -1/8 sin (3k1/- -0) (38)

A numerical solutioi Lf equftions (31) and (3:. has been carried out on

an IBM 7090 for a number of different values of the parameter q . The

results are shoin in figures 5-8. The dashed curve is the asymptotic solu-

tion for x << 1 given by equations (34) and (35). !'& is evident that, for the

small values of q0 , the asymptotic solution is a yery good approximation

indeed to the actual solution over the entire range shown. The numerical

solution has also been carried to values of T > > 1; the results verify the

validity of equations (36) and (38) in this limit.

An energy integral of the system (31) and (3Z) is readily obtained, namely
x

12 (d + I x (" Z + _L(d)+ 2 ( 2
2 q 2 d-r 2Z Xd-e 4 dr 4]d 2q

0
(38a)

The integral in equation (38a) is the internal energy in nondimensional form.

The internal energy can be calculated from this equation once the equations

of motion have been integrated. The result for qo = 1 is shown in figure 9.

where for comparison the kinetic energy has also been plotted. It is seen

that there is no simple relationship in this case between internal and kinetic

energy.

The predictions of the theory may be compared with the experiments of
9

Dattner. These experiments, with deuterium as the working gas, covered

a range of pressures of 200-1000 p and a range of voltages of 3-7 kv. With
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POSITION OF PLASMA FRONT AS A FUNCTION OF TIME
FOR VARIOUS VALUES OF THE INITIAL CHARGE
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Figure 5. Position of front as a function of

time for various values of qo
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VELOCITY OF PLASMA FRONT AS A FUNCTION OF TIME
FOR VARIOUS VALUES OF THE INITIAL CHARGE
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Figure 6. Velocity of front as a function of

time for various values of q
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CHARGE ON CONDENSER AS A FUNCTION OF TIME
FOR VARIOUS VALUES OF THE INITIAL CHARGE
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Figure 7. Charge as a function of time

for various values of q
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CURRENT AS A FUNCTION OF TIME FOR VARIOUS
VALUES OF THE INITIAL CHARGE
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Figure 8. Current as a function of time for various

for various values ofq0
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ENERGY IN GAS AS A FUNCTION OF TIME
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Figure 9. Energy distribution in the gas

as a function of time for q= 1
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circuit parameters of C = 12. 5 x I0 =6 f and Le = 57. 4 x 10 =9 h, this range
of pressures and voltages corresponds to a range of values of qo of 0. 8 - 4. 2.

It was observed that the velocity of the gas became roughly constant after

about 1/4 of a cycle, with the velocities attained by the gas ranging from 6

to 11 cm/ ji sec. The maximum calculated velocities occur at about the proper

time and range from 4 to 14 cm/p sec. Thus, there is rough agreement be-
tween theory and experiment.

One of the sources of discrepancy between theory and experiment lies in

the assumption that the flow is one-dimensional, that is, that the current

interface is a plane disk. The magnetic pressure across the annulus varies

as 1/r, where r is the radius, and therefore decreases from the inner
electrode to the outer. This pressure distribution is incompatible with the

uniform dynamic pressure which exists across a plane disk. It is actually

not difficult to modify the theory to take this effect into account. The shape

of the interface can be calculated 1 0 by requiring that the magnetic pressure
across the interface is everywhere balanced by the dynamic pressure given

by snowplow theory. The shape calculated in this manner turns out to be

a paraboloid of revolution, in agreement with experiment.

IV. SIMILARITY SOLUTION FOR INVERSE PINCH.

As mentioned in the Introduction, special cases exist for which a

similarity solution of the full magnetohydrodynamic equations may be ob-

tained describing the flow in complete detail. Of course, the external
circuit must be replaced by an appropriate boundary condition. One such

case is that of the inverse pinch with Just those initial and boundary conditions

for which the snowplow solution was obtained above, namely an initial uni-

form axial field in the plasma and a discharge current which increases
linearly with time. Details and results of the calculation appear elsewhere. 11

It is sufficient to say that the solution is of the form

p(x,t) - 0oa (0)

u(x t) = c* U (1)
2 (39)

p(x,t) = p 0 c* 2

Bz(x, t)=poc*Z 1
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SPEED OF CONTACT FRONT AS A FUNCTION OF
INITIAL PRESSURE IN GAS FOR DIFFERENT
VALUES OF THE RATIO OF INITIAL MAGNETIC

PRESSURE TO GAS PRESSURE
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speed of contact front obtained from a similarity solution of the full equations
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where o, U, P, and P are nondimensional functions of a single nondimension-

al variable cP. Two exact integrals of the four magnetohydrodynamic equa-

tions are obtained, and the remaining two equations integrated numerically.

The full detail of the flow between the shock and the contact front is thus ob-

tained.

Of particular interest is the result shown in figure 10. Here the speed

of the contact front obtained from the solution of the full equations is com-

pared with the speed predicted by the snowplow theory, equation (13). It is

seen that there is remarkably good agreement between the snowplow solution

and the similarity solution over the entire range of shock strength. The

reason for this uniformly good agreement is that, independent of shock

strength and specific heat ratio, most of the momentum in the flow is carried

by the fluid very close to the contact front where the density and velocity are

greatest. Snowplow theory, being simply a statement of momentum balance,

predicts rather accurately the motion of this portion of the fluid. This

accounts for the success of the theory noted in the preceding sections.
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NUMERICAL APPROXIMATIONS FOR WEAK SOLUTION OF MIXED

INITIAL-BOUNDARY VALUE PROBLEMS OF FLUID FLOWS

Dr. W. McIlroy

Mr. M. Halem

Republic Aviation Corporation

1. INTRODUCTION.

This paper will present a brief survey of some of the problems that are

under investigation by the Plasma Propulsion Lab, in conjunction with the

Digital Computing Division at Republic Aviation. Each of the problems

represent a special case of a more general system of conservative hyper-

bolic equations with moving boundaries.

In support of the work being carried out in developing a pulsed plasma

accelerator, a number of studies have been made of the pinch process using

various models with varying degrees of sophistication. In the present paper

emphasis will be placed on the analytical solution obtained by Chu1 and the

numerical gasdynamic treatment using the technique of the pseudo viscosity

term of Lax for application to an IBM 7090. The analytical approach is

based upon the assumption that one shock, and only one, exists. The numer-

ical approach makes no such restriction. It is conceivable in the general

case that more than one could exist, resulting in shock collisions and violation

of the constant entropy condition for piston problems. On using the numer-

ical techn4que, however, if more than one shock does arise they are im-

mediately recognizable as areas across which rapid changes in the variables

take place, and are automatically accounted for in the analysis. This tech-

nique is therefore a very powerful one, especially in cases where the actual

physical processes are not completely understood. This same method has

been applied to the study of hydromagnetic shocks generated by the relative

motions of fluids in the presence of magnetic fields. Here again the shocks

are readily identified and can be categorized into the fast, slow, or Aliven

variety, without the necessity of prior shock fitting. The technique is

applicable to fluid flows for arbitrary dimensions.

The analytical approach is presently being extended to the compression

of a sphere of plasma by an external magnetic field, where the field intensity
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is a function of the plasma shape at any instant. This problem is being

studied in support of project Cantaloupe under contract with AFSWC.

A further problem that fits into the general numerical procedure is the

Stefan problem of heat conduction, which is extremely important in reentry

studies. The program that has been developed makes it possible to treat

arbitrary geometries in one, two. or three dimensions, with layers of

different materials and moving boundaries. A similar problem also arises

in the studies of the initial ionization processes and skin formations in the
3pinch, as was described by Killeen, Gibson and Colgate

Z. 1 HYPERBOLIC SYSTEMS OF CONSERVATION FORM.

Consider the hyperbolic systems of equations from gasdynamics and

magnetogasdynamics which have the following form governing the basic flow

equations:

Ut -+itVF - .1

where U is a column vector of the unknown functions, F and B are

vector valued functions of xi, t and U , where xi represents the spatial co-

ordinates x, y, z and the symbol V is the customary del operator. The

initial condition U (x, 0) . T(x), is assumed to satisfy equation (Z. 1). Such

systems of equations are said to be of conservative form.

To illustrate such systems, consider the nonsteady, non-isentropic,

dimensionless ideal gas flow equations in Eulerian coordinates which are

~(z.,.,)a r r

at 9 r
- t E-) + + dp)
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where

U= Ta o

r~rR

and whe re
a are dimensional quantities

and d . 0, 1, 2 for the one-dimensional, axisymmetric, spherically sym-

metric cases respectively.

The familiar Lundquist equations (for infinitely conducting, nondissipative,

inviscid ideal gas) in dimensionless form are:

'my

M. Br 4- 0
at x (By4
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ax My0M

rn + (M :W ,+aa~L~i

ax

where .1 r1[| z "I) and U is the initial valueL--,°- of U yo
Y

The equations for a steady, two-dimensional, nonviscous, adiabatic,

rotational flow are:

5V ){/ v) - -o

( +~(z _v. + . -

49



TN-61 29

where p, p, u are the unknowns.

These particular systems are only a sample of those which lend them-

selves to a general method of numerical solution which is directly applicable

to the actual form of the physical problems. The occurrence of these prob-

lems in nature usually involves at least one moving boundary and more often

two free boundaries. Almost any attempt at their solutions has led to simpli-

fying assumptions which usually are not physically realizable.

For such systems a complete mathematical theory exists, since they are

all of hyperbolic type. However, the existence and uniqueness of solutions

of such systems are all of a local nature. The physical nature of the problems,

because of neglecting such notions an viscosity and heat conduction, gives rise

to the mathematical notion of "shocks" or discontinuities. These discontin-

uities in the solutions do, however, have certain algebraic properties derived

from the conservation principles. It is these curves which become the free

boundaries in many important physical problems and they have led to a host

of analytical and numerical techniques for effecting their solutions.

2. Z THE "LAX DIFFERENCE SCHEME".

The method adopted for the numerical solution of such a class of free
2boundary problems is essentially due to Lax . The notion of weak solution

is introduced, since one is interested in solutions in the large which need not

have continuous first derivatives. A solution is defined as weak if it satisfies

f ,V4 +FV.W-' S dxc~t+ 1(x,0)(x x 0 (2.21)

where W is a test function with continuous first derivatives and is zero out-

side some interval. It can be shown that for two genuine solutions on two

adjacent domains separated by a smooth curve, where the slope of the curve

satisfies the Rankine-Hugcniot shock conditions with respect tc these two

solutions, the smooth curve forms a weak solution over the entire domain.

As so often happens when one generalizes the notion of solutions in mathe-

matics, a penalty is imposed. In this case the initial values for conservative

systems do not determine a unique weak solution. However, an additional

principle asserted by Lax to determine the unique solution is that "weak

solutions for fluid problems are limits of viscous flows".
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Using this principle one can enlarge equations (2. 21) to a nonlinear

parabolic system

l +VF=NF + (2.2.2)
For a fixed initial value of U(x, o), the solution exists for a range of t

independent of X . If corresponding solutions U % (x, t) converge boundedly

to a limit U(x, t) as . - 0, then this limit will be a weak solution.

The difference scheme is derived by choosing (Ar) 2 and using a

forward difference approximation with respect to t and centered difference

approximations with respect to x.

This difference method gives rise to the following recipe for differencing

the equations.

Replace a by

t

and ____ by
ax

-x FC" x + AX. - F 3 ( -

This difference scheme when viewed as an approximation to equation (2. 2. 2)

satisfies the stability condition for parabolic equations;

i.e., '\&± < I

The difference equations can also be shown to be stable for the hyperbolic

systems.

Since it is desired to select the unique solution in nature, it is con-

jectured that one should try to satisfy the stability criteria of Courant-

Friedricks-Lewy for hyperbolic systems (i. e., 1

It is our aim to extend this method to mixed initial value problems. For

free and fixed boundary value problems one usually has integral forms of the

conservative systems determining the behavior of the boundaries. The

system of integral equations take the following form
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+ Q(Z.z.s)

These integral forms lead to equations (2.1. 1)by application of Gauss'

Theorem. However, the equations being solved are of the form (2.2.2). Thus,

equations (2. Z. 5should be modified if they are to lead to equation (2. 2. 2). A

natural generalization of the integral forms leading to this system takes the

form

S U,4y + F rL(2.2.6)

From this form it is possible to obtain equations governing the motion of

the free boundaries.

Questions as to the existence of solutions of equations (2.2. 2)subject to

conditions (2. 2.5) have been only partially answered for specific problems.

That such solutions U. of th- equations (2.2. 2) with boundary conditions

(2.2. 6)converge to solutions of equations (2. 1. 1) subject to boundary conditions

(2. 2. 51can only be conjectured at this moment. However, for many of the

cases tried so far, the method seems to give promising results.

3. APPLICATIONS TO PHYSICAL PROBLEMS.

The general difference scheme just described will be applied to various

problems which have already been solved by special techniques. A summary

of the technique by which analytic solutions have been obtained will be de-

scribed, and then the application of the generalized Lax method to the same

problem will be presented. The following selection of problems includes some

of those that have been of theoretical concern to the Plasma Propulsion Lab

and of numerical interest to the Digital Computing Division of Republic

Aviation Corporation.

3.1 STEFAN'S PROBLEM.

The first type of application to be considered includes those physical

problems governed by parabolic equations with moving boundary conditions.

Missile reentry problems for bodies with ablating materials, melting of ice,

recrystallization of metals, are some examples of problems now considered

as Stefan's problem. The problem also arises in studies of the initial
3ionination processes in a plasma . Consider the simplest form of the Stefan
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problem described by the following equations:

at _ ___X × (3.1. 1)

for 0 <X < () where b (t) is the position of the boundary subject to

the following initial and boundary conditions

(3. 1.2)

v (,o) = x

b,(oY- .i

This is almost the form considered by Douglas and Gallie 4 for which a

numerical difference scheme is shown to converge to a solution whose ex-

istence and uniqueness 'ave already been established by Evans 5  Theirs

is a series method that resolves the solution. However, the coefficients

of this series are difficult to obtain and no radius of convergence is available.

Applying the recipe for the equation of form (2. 2. 2)to the equations (3. 1. 1)

where U . v and F - 0 leads to the following difference equation at some

point x, t in the interior of the domain O- t X o'( O <-

V C X + Ax) 2 V (Xt)* V(Y' - A 3(3.1.3)

Additional equations are now needed for the boundary points [b (t), t]

Equations (2. 2. 6)applied to (3. 1. 1)lead to the following equations

3 b(t)

AV d (3.1.4)
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Since v [b(t), t] is known for all t, (3.1. 4gives an equation for b(t).

Approximating the integral by a trapezoidal rule and replacing time de-

rivatives of the quantities by forward differences lead to the following

where N =bt L1A

The general recipe for the solution of free boundary value problems for

hyperbolic systems obtained from the integral conservation laws was an
outgrowth of this problem. The effectiveness of this approach for a single
nonlinear parabolic equation, with boundary conditions general enough to in-

clude radiation terms and ablation, is described in an RAC report by Pines,
Halem and Broder. 6

It was natural to try to extend this approach to nonlinear parabolic sys-
tems. Other numerical schemes for such systems are presently being in-

vestigated, and as yet many open questions remain to be answered.

3. 2 HYDROMAGNETIC SHOCKS
The next class of problems that the general numerical procedure will be

applied to are the problems leading to magnetic shocks caused by relative
motions. Consider a conducting pole face of an electromagnet adjacent to an

infinitely conducting fluid with a magnetic field normal to the face and where
no relative motion between magnet and fluid is assumed. (Figure 1.)

Suppose the magnet is suddenly set in motion with a velocity - Uy . A
motion will result because of the presence of the x-component of the magnetic
field. The magnetic lines of force can be regarded as fixed between magnat

and fluid. The motion of the magnet pulls down the lines of magnetic inten-

sity and the fluid in a thin layer adjacent to the pole. This produces a com-
ponent of the magnetic field B in the layer. The variation of B with x iny y
the layer results in a current density in the z direction of magnitude

k aH Hy Thus the fluid experiences a magnetic force INS which is in

the x direction of magnitude By y This force produces a motion

in the layer which then propagates out. One can consider the motion of the
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electromagnet in the x direction, which leads to a pure gas dynamic problem,

or in some arbitrary direction leading to more complicated shock and wave

patterns.

The resultant flows will give rise to fast, slow, and Alfven hydromagnetic

shocks as well as various wave motions. The particular problem for motion

in the Y direction was first'formulated by K. 0. Friedrichs and leads to

resolution of shear flow discontinuities. J. Bazer was the first to obtain
7

numerical solutions of these problems . The method used was that of piecing

together fast shock and simple wave solutions.

The general approach described in Section 2, when applied to the Lund-

quist equations (2. 1.2) leads to the following system of difference equations.

. 3 4 
% 1~ _)

L\. -+- ",r,

+ % (3.2.1)
(. 42 A xn ---r' m "r -'

- (-
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(3. 2. 1)con't.

F:*f m *I +l) + E +IA 4-
2 2 +/ ,A

+ 2___ _ i-I+ +

2 ~:'Z )
MI"I'i.) XL4 + M L* E +

.__ m _ __ __.

Select a coordinate system that moves with the mean velocity of thethinlayer. The initial vect+r is M (yo Y f.t , H) for I(0

Un C Bro ) ,Ao , o E o~) "x > O. The numerical solution with

this difference method gave very good agreement with the numerical an-

alytical solution of Bazer (figure 2). For better agreement in the neighbor-
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At
hood of the shock, larger values of x are needed whereas for the steady

state region, smaller mesh spacings should be used.

This approach is now being used in resolving other hydromagnetic shock

flows and seems very promising.

The method gives numerical answers which are sufficiently accurate to

be used directly in shock fitting techniques. Quite often the knowledge of the

strength of some parameters across magnetic shocks of arbitrary types, as
8well as the relations which are known . enables one to actually compose the

flows from the pieces directly. These techniques are now being developed

for arbitrary motions of the magnetic poles moving into infinitely conducting

plasmas.

3.3 MAGNETIC PISTON PROBLEM (PINCH EFFECT)

Consider a pair of circular electrodes in an electrical circuit containing

capacitive, resistive, and inductive elements. When a sufficiently high

voltage is applied across electrodes, the gas between them ionizes and a

current sheath confined to a thin cylindrical shell at the edge of the electrodes

is produced enclosing column of gas between electrodes. The magnetic field

produced by current sheath then interacts with the current to produce a

rdially inward Lorentz force, J x B, and compresses the enclosed gas.

If the ionized gas has high conductivity, a current sheath of approximately

zero thickness is formed, which enables one to think of this sheath as a

magnetic piston. Since the magnetic pressure and gas pressure should be

continuous across the infinitely thin current sheath, we obtain gas pressure

"+" where pB is static gas pressure behind the piston
(8 IT2 r2

which varies in time. It will be assumed initially that I t) is given from

external circuit characteristics and the time varying inductance due to move-

ment of sheath is neglected. Assuming no leakage through the magnetic

piston (or current sheath) equations (Z. 1.1) govern the flow. Prescribing Pg

on the curve OP in (figure 3) and the initial state on OA is a well posed

problem.

BS represents the shock curve arising from the compression by the

piston. The positions of the curves OP and BS as well as the flow between

them is to be determined.
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Figure 3.

Several approximate methods for solving this problem have been de-

veloped, but a complete solution to the physical problem is still open. A

widely used technique for approximating the solution is the snowplow model.

This thoery assumes that all the mass swept up by the shock is compressed

into a thin layer so that the piston and shock curves can be treated coinci-

dentally. The motion of thisolayer is governed by the momentum equation.

This model gives valid approximations when the shock is sufficiently strong

and the specific heat ratio of the gas is close to unity.

Another approach is that described in the paper by Drs. Greifinger and

Cole 9 which makes use of similarity solutions. Assuming the solution has

conical similarity, and introducing a coordinate system employing the stream

function and a certain mass ratio parameter, one obtains two coupled ordinary

differential equations.

3. 3A An Analytical Formulation of the Pinch Problem.

Employing a somewhat different approach by B. T. Chu1 it is also

possible to reduce the partial differential equations governing the flow to a

coupled system of ordinary differential equations. By labeling the particles

as when they are traversed by the shock (figure 4)
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a Lagrangian formulation of the equations for cylindrical geometry is

obtained in the form

- (3.3.1)

where the subscript S indicates that the quantity to which it is affixed is

evaluated just behind the shock. For a strong shock the density ratio

The boundary condition to be satisfied, obtained from the usual shock con-

ditions and magnetic piston in dimensionless form, are
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-2 M'o

U2+

p @ + I(3.3.2)

where U is the shock speed (Note: + ± t
Assuming strong shocks one can write the solution in a power series e

]D =-- +E P + 6 p% ..

r. = IfCo + ET(, + G2~z 4 r.. (3. 3. 3)

( o + + La) sud +..

(a' (') 2. (z)

4 C ° LL + eLo +.

Substituting into the equations (3.3. Z)and collecting like terms of C, the

lowest order terms are found to satisfy the differential equation

L](334)

WHERE ro (t AND
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This equation is identical to that obtained from the snowplow model.

Since the initial condition of ful at t=O is singular, the solutions of these

equations are determined by the single condition that f" (0) <0. When I(t)

sin or t one can derive a power series approximation for f (t) which for

small oct is

(t - I- -+0 (t+) +(3.3.5)

from which one obtains f" (0) as a starting condition.

Making the substitutions and equating first order terms then leads to the

following integrodifferential equation

2 T+ Cf

0

GQI',t)~~ (- ~ L 9t)c~j

r~'F ((T) + L

At t 0 0,f . 1 is a singular point, and the solution is determined from the

condition f1 (o) a o.
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To obtain initial values one again obtains a power series representation

of f (t) for small act as

The numerical technique used to solve the coupled system of differential

equations was a general self-starting, Cowell (double sum) second order in-

tegration scheme with eighth order accuracy. The routine has the option of

using a fixed step or variable step size for better corrections. This method

is more rapid and has greater accuracy than Runge-Kutta schemes. The

integrals are evaluated by Simpsen's rule and the partial differential operator

on the integrals by a backward second order difference scheme. The power

series solution for small Oct is used to allow for a sufficient number of points

to build up good integral and differential approximations. The integration

scheme is used with a sufficiently small fixed step size to avoid exceeding

the memory storage requirements of the 7090 which might occur if variable

time steps were used. The size of the steps was determined by solving

special cases of these equations with the variable time step option. The so-

lutions give the snowplow results as the zeroth order approximation, while

the first order result gives the separation distance betwen the piston and the

shock (figure 5. ). This distance is relatively small, so that the dynamics are

vll satisfied by the snowplow. However, the first order solution gives the

distribution of density, pressure, temperature and velocity in this small

piston-shock space. Because of the assumption of strong shocks, the density

at the piston is infinite initially, and remains so for the rest of the motion.

The basic assumption of such analytical solutions is that only one shock

is formed during the piston acceleration. It is conceivable that a number of

shocks could develop in the general case, and under these conditions re-

flected waves could change the constant entropy condition at the piston. It

is in this respect that the Lax procedure represents an extremely powerful

tool, since high gradients throughout the flow field will become immediately

evident.
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3.4 THE LAX DIFFERENCE APPROXIMATIONS FOR THE PISTON

PROBLEM.

For the present purposes the difference equations will be specialized to

treat one-dimensional flow.
Consider a subdivision Q of the domain D of figure 3 and denote the mesh

points L" A, r and + - - where i and j are non-negative
integers. Let U (r, t) at these points be denoted as U i. Using the recipe de-
scribed in (2.2.3. 2. 4) the following system of difference equations over the
interior points with "  (4r)zzAt and ,C""- can be derived from
equations (2. 1. 1)as

(3.4.1)
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The time centered difference approximation over unequally spaced

distance intervals Lr and ocAr at the mesh points adjacent to the piston

path (figure 6) can be derived from the Taylor series expansion in both di-

rections; and eliminating the second order terms, one obtains for a function

q (rt)

(3. 4. 2)

and similarly

(3.4.3)

(+ 1) L (L)

A r Ar

Figure 6

Denote the difference operator in (3. 4.2)by V1 and in (3.4. 3)by Vi

Apply these approximations to (2. 1. 1)one obtains the following system for

-the points adjacent to the piston path:

66' ?I +
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+

(3. 4. 4)

3.5 NUMERICAL APPROXIMATIONS AT THE BOUNDARY.

The fundamental disturbances of the fluid arise and propagate from the

moving boundary and present the inherent difficulties of the problem.

Various numerical techniques were attempted and the appropriate approxima-

tions will be discussed.

3. SA Direct Methods for Boundary Computations.

The generalized system of integral equations to be used is:

r~t)r ftc) (3. 5A1)

(a) 8 =
0
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r (t)

E ~ (r = + r pSPVo~tr cr

The additional boundary conditions arise from the equation of state and

the equation for the magnetic pressure.

These equations are analogous to the generalized integral forms for

fluid equations considering viscosity and heat conduction. (3. 5Ala says

there is a mass source. In the treatment of Von Neumann and Richtmeyer 1 0

this term does not appear, since they were particularly careful to maintain a

close analogy with the physical description. It is one of the aims of the

present studies to investigate t he present scheme with and without this effect.

A first derivative approximation for Ur at a boundary point is required in

terms of computed values of U at the interior points. Denote by P, A,

i a I. ... N, the piston point, adjacent point, and subsequent interior points.

Expanding U at P (j) with increments of Of Lr and (1 + ot )Ar one obtains on

eliminating second order terms

-.Y c(U LC()ZUIA +.( ~ZC JP (3. 5AZ)

Let this derivative expression be denoted by ApJ U. An iteration procedure

will be described to evaluate U at the piston boundary. One obtains as a
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first approximation for p in dimensionless form
p

'Pp ~r (3. 5A3)

remembering that rarefactions behind the piston are to be neglected until a

later date. This approximation uses the value of r at the previous time

(J-l) and will be improved once r (j) is computed.

The remaining variables to be determined are pf r (t), f, m r(t), 4
E {r(t), t } and r(t). Two prdcedures were followed at this point.

As an initial approximation it is assumed that the specific entropy is a

constant at the piston (as it would be in absence of X ). Therefore, knowing

Pp (j), P p can be computed from

px p
e exp (*) (3. 5A4)

Since the density is now determined over the entire mesh at time, t ,

one can now compute the total mass. From the equation of mass conservation

(3. 5Ala) the position of r (jAt) can be determined. However, there are certain

possible positions of the piston for a given At.

The position of the piston

J

Figure 7

at the time (jAt) might lie between the points p, A of time (j-1)At or between

(A, 1), or (1, 2), etc., as indicated in figure 7.
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Since a fixed mesh is used for all time, and the quantities for all in-

terior and adjacent points are computed independently of the piston position,

It is possible to integrate over a region with too many points. Assume the

first case described, use a trapezoidal approximation for the integrals in

equation (3. SAa) and solve for aAr to obtain the following expression for
CCJ +:

(3. 5AS)

-t-t'~ -(I (XI)a5 (*2c)1--~-

+ ~ Q~\ +cx (I+ C1)r

where the initial approximation oC j+ ; is used.

Since it is necessary to evaluate Vp at (j+ 1), an iteration procedure
for X+ I was introduced. If 0 < o+ ' 1 then the points over which the

integral is evaluated is valid for a first approximation. Knowing OCj + 1 and

the number of points one easily computes r(j). It remains to co pute m (j).

Using a trapesoidal approximation once more for equation (35Alb), one

obtains

-~ s- (i + 2(x,.)rn-.'
(3. 5A6
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where m J + 1 is initially computed as r(j+l)-r(j)/A t.

At this stage E can be computed from the equation of state knowing p,

mp, p p. However, since the interior points have computed Ei3 with the

quasi-viscosity term included, it would seem to maintain the consistency of

the technique that E be also computed from an integral equation.p
Similarly, one obtains

E: +1 6 + +-.

(3. SA7)

'PIP ( + <X,) A.r

+ 2EoRo - r_ +,: L+ VL ,.r2 " , :.,
L= A

j+ 1
where E j is initially computed from the equation of state.p

This determines all the values for the boundary point. Equating the

equations (3. 5A3) and the equation of state, one obtains the following formula

for r(t) at time j+ 1

-)2(, - 0. SA8)
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The iteration proceeds by repeating the sequence of calculations for pp

p , M E p, r using the latest computed values, averaged with the pre-p ' p

ceding values. It is also possible to avoid the use of the assumption of con-

stant specific entropy. Again use r(j-1) for evaluating Pp. Now, only the

assumption of constant entropy at the piston, as a first guess for P pJ, is used.

3. 5B Indirect Methods for Boundary Computations.

The alternate procedure that was tried was the indirect approach. This

method has the advantage of simplified boundary conditions, but requires a

compensating amount of computing time for iteration on finding the true

boundary.

R(t) is prescribed for to<t< T, and assuming the piston path is the par-

ticle path of the point initially at the piston, one obtains U p(t) as well. Know-
ing the variables at the adjacent point A and the piston point P, at some time

t, the values of the variables are computed by linear interpolation at some

intermediate point C determined by the position R(t+ At)

figure 8 as

Figu re 8 Figure 9

At A
rrt, 44 __(._5_I

(r t . t+A)

where U is the vector p, m, E and Ar n is P'A. Using the unequally spaced
difference approximations (3.4.2) and (3.4.3), and applying them at the point C

gives rise to the following system
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whe (e gas law.

F(Uic h is the vector kly4e i7 al

and~ -I) ~E F and for the 2nd component of L

the prescribed value of Uis used to compute Mh _3+ "I yt+
Having computed WL E the value Pp is computed again from

the ideal gas law. Pp

Since the equations for unequally spaced intervals may blow up as

3NJ-' 0 a Lagrangean interpolation is performed to compute the

adjacent point when &rN < e L r . This has the tendency to greatly

stabilize the unequally spaced difference approximations. This feature was

not incorporated in the direct approach, though it is now being introduced.

In the case, as shown in figure 9 where R(t) may pass through several

points for one time step, two features have been adopted. If only one point

is passed, the newly computed adjacent point is omitted. If more than one

point is passed, a refinement of the mesh spacing is performed by modifying

At.

This explicitly defined numerical scheme can now continue to the next

time step and so on to T. Since the magnetic pressure has been defined for

all t, comparing the computed pressure on R(t) with the prescribed pressure

enables one to fit the solution by modifying R(t).

Using the results obtained from the snowplow model as the first approxi-

mation for R(t), and then interpolating at certain intervals to obtain the

necessary agreements on the prescribed pressure, leads to improved

approximations for the desired solutions.

A much more exact procedure for determining the initial piston motion

when the piston is driven by the magnetic pressure is by using the method of

characteristics prior to formation of a shock wave.
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When this is done for a linear current relationship (since the shock form

is an extremely short period of time) it is foun~d that the piston velocity varies
2 2 2 2 2as t;u (t)=at ,where a(Zc 0 1 / 16 T P . The shock firstp 00"

forms at a time t s -5  f (-,) at a distance from the outside radius

Xs - 2c °  Zc g ( From characteristic theory, therefore, the

aa

distribution of velocity, pressure, and density in the fluid between the piston

and the point of formation of the shock can be readily derived. This enables

one to have a more precise numerical procedure around small times.

Figures 10, 11, 12 show some of the numerical results that have been

obtained using these approximation schemes.
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EARLY SOLAR EVOLUTION

Dr. Arthur N. Cox
Los Alamos Scientific Laboratory

For a number of years several of us at Los Alamos Scientific Laboratory

have been interested in applying to astrophysical problems some of the tech-

niques developed for bomb design. Conditions in stellar interiors are some-

what similar to those in bombs, and in some cases it has proved possible to

modify the time-dependent energy and mass flow equations so that they can be

applied to stellar structure problems. With the current ban on nuclear bomb

testing, we now have effort available to spend on these astrophysical applica-

tions.

There is much work to do in the field of stellar structure and stellar

evolution; and one of the current interesting problems is an understanding of

the complete history of the sun. Our calculations reported here start at a

time when probably the solar system was condensing out of material shed

from a collapsing cloud of matter. We watch this cloud increase its surface

temperature from just a few hundred degrees to the present solar effective

temperature close to 6, 000 0 K. Our future work is to be directed to the late

evolution of the sun when the increased solar radius and luminosity will make

planetary conditions much different than they are now. The results I have today

ignore the presence of the planets and the rotation of the sun. Actually our data

apply only to the rapid evolution during the first few hundred million years of

the solar life.

To study stellar structure it is necessary to consider a large number of

physical processes. The equations that describe these phenomena are of three

types. Those of the first type in figure 1 give the flux of energy due to radia-

tion, convection, and conduction. The radiation flux is that given when the

photons diffuse from one region to another region with only a slightly different

temperature. The Rosseland mean absorption coefficient or opacity appears

in this radiative flux expression. The other quantities are a, the radiation

constant; c, the velocity of light; p, the density; and T, the temperature which

changes in our one-dimensional calculations only in the direction r.

For convective energy transport we use the Prandtl mixing length

theory. The flux is proportional to the 1. 5 power of the excess of the
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existing temperature gradient over the temperature gradient followed by an

adiabatically expanding turbulent element. The element persists only for one

mixing length L, and the mixing length is taken to be 1. 5 times the local scale

height. In the flux expression c is the constant pressure specific heat; v

the turbulent element velocity; r the specific heat ratio; 6 the constant

volume specific heat; and g the local acceleration due to gravity.

The conduction equation is the usual one with v the conductivity. We note

that this equation can be combined with the radiative flux equation if a con-

ductive opacity is properly defined.

The second set of equations given in figure 2 contains the hydrodynamic

equations. Our calculations are done in a Lagrangian coordinate system

where we follow the motions of mass shells, and it is not necessary to write

an equation for the conservation of mass. The conservation of momentum

law gives a force equation which indicates the magnitude and direction of the

acceleration, Y, of an interface between two mass shells when the pressure

gradient, dr , and local gravity are not balanced. The Navier-Stokes hydro-r'

dynamics equations also include the conservation of energy equation where Q

is the heat put into a shell by the flux equations or by energy prqduction.

The equations just described which govern the flow of energy and matter

contain a large number of variables, but through various relations one can

reduce the independent variables for a mass point of fixed composition to

only the temperature and density. These required relations are the pressure

and energy equations of state, the opacity law, and energy production formulas

all of which depend on the composition of the matter, the temperature, and

the density. These relations are given in figure 3. Here b' is the gas con-

stant which includes electron degeneracy, and E and E EX are the ionization

and excitation energies. Radiation pressure and energy have been included.

To illustrate some of these relations, there are shown in figure 4 pressure

data for a mixture of 0. 744 by mass of H, .236 by mass of He, and . 0Z by

mass of heavier elements distributed as given on the diagrams. If the

electrons are nondegenerate (nuclei are always nondegenerate) then

b= b =

and the pressure equation of state is obtained only from the state of ionization
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of the mixture. At low densities the b has a plateau around a kT of a few

volts because of the complete ionization of hydrogen and Hel. At higher

temperatures the helium and other rarer elements are ionized to produce

more particles for pressure.

In figure 5 the ionization energy of this mixture for various temperatures

and densities is given. Again, steps occur in the variation with temperature

with constant density, because of the successive ionization of the important

elements in the mixture.

Finally in figure 6 we show the opacity of the material at various tem-

peratures and densities. A much more detailed table of opacities than shown

has actually been used, and the table has been inserted in the machine during

the computation. Enough points are included so that linear interpolation for

log K versus log T and log p is accurate to 10 percent. Simple fits have

never proved very accurate over reasonable ranges of temperature and den-

sity.

The total solar mass is divided into 30 spherical shells of approximately

equal thickness but not of equal mass. The thickness of these shells now is

allowed to vary as the usual time integration of the energy and matter flow

requires. Independent variables for a shell of fixed mass are composition,

temperature, and density. The boundaries between the shells will take

positions such that the net force at an interface is zero.

From a starting array of mass, composition, temperature, density,

position. etc. for each mass shell, the flux equations and the force equation

can be evaluated to give net energy flow in the time step At and the net

motion in time At. There is also to be considered the thermonuclear energy

production in the time step. The energy equation of state and the conservation

of energy equation can be used to evaluate the temperature changes in the in-

dividual mass shells. Likewise the new positions of the interfaces determine

the new densities in the shells. Any composition change can also be noted,

and in some cases this may change the opacity law and equation of state some-

what. The variable now can all be advanced to be ready for the next time

step.

After some difficulty with the hydrodynamics as described above, we

have converted to a method which places the interfaces in hydrostatic balance

at the end of each time step. Thus when going from time n to time n + I with
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a step of At,

n i+ 1i i+/%

n+ 1= V + E- Ar + AT. 0
j=i1 j j=i - 1/Z j

where t for interface i is obtained from the conservation of momentumi
equation, and the partial derivatives are rather elaborate analytic expressions.

Solution for the Ar and AT values are made by an implicit method coupled with

the usual implicit method of computing radiation flow. Never do motions in

stellar interiors get so rapid that this assumption of constant perfect balance

is invalid.

There is another violation of the fundamental equations that we make, and

that is in the equation for the convective flux. The convection is so efficient

that a very slight excess of the existing temperature gradient over the adi-

abatic gradient can carry all the energy required. Spurious fluctuations due

to the integration procedure can then cause very large excursions in the con-

vective flux. Thus, we divide the convective flux by a large factor so that to

carry the flux required of it, convection makes the existing temperature

gradient somewhat steeper than the adiabat. This steeper temperature gra-

dient only slightly affects the structure of the star. There is more room for

small integration errors with this steeper gradient, and wild fluctuations are

largely eliminated.

The results I show today are all in the May 1961 issue of Sky and Tele-

scope. For the details one should consult this article.

By manipulation of methods previously developed and by the addition of a

few new features, we have a machine code capable of doing this early evolu-

tion of stars with both more and less mass than the sun. The later evolution

of stars is another current problem which is also being studied by these time

dependent methods.
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THE AERONUTRONIC HOP PROGRAM FOR FLUID FLOW

Dr. R. A. Grandy
Aeronutronic Division, Ford Motor Company

The differential equations of hydrodynamics are

dt +, P = 0 (The momentum equation) (1)

dt+ pq- 0 (The continuity equation) (2)

dt + P"= 0 (The energy equation) (3)
dt dt

dt q (The transformation (4)equation)

P =F(p, s) * g(p, e) (The equation of state) (5)

In the above q" is the flow velocity, p the density, P the hydrodynamic

pressure, V = l/ p the specific volume, S the entropy, e the energy density

per unit mass, and r = Tx + jy + 'z is the Eulerian radius vector defining the

location of an element of the 'luid. We may also write-= u+ Jv + kw.

Equations (1) to (5) are called the Lagrange equations of hydrodynamics.

In this scheme. x. y, and z are considered functions of the fluid element in

question.

Finite difference methods for the hydro equations break both the space and
1

time continuum into finite intervals. The hydrodynamic variables are

sampled at various points in space and at various times. Let us restrict

attention to one-dimensional flows for purposes of illustration. In this case

a one- dimentional spatial mesh is sufficient to define the problem. The

above equations, for example, are most commonly differenced in the form:

n n

un+1/2 n-l12 + At nPj-1/_P +112) (momentum) (d)
(P Ax)
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[(Xn+ 1) + 1in+l 1 ) + = [(Xo)'+ 1 1 O) o +I]j-1/ J- 1  J-1/2

(continuity) (2')

n+ n n( '.i/a + 1 (v 1 - Vj 1 /ne j-/ 1/-2/ 1//

(energy) (31)

Sn+ 1/2 n+ 1/2 (transformation) (4')
+ U

+1 = At + U

5n+1 n+ 1 n+ j-l/2 (equation of state) (5')

The superscripts n and subscripts j represent the temporal and spatial

mesh points under consideration respectively. Time centering of the above

equations has been achieved by defining the velocity and coordinate of a mesh

point a half cycle apart in time. The superscript OL equals 0, 1, or 2 for

slab, cylindrical, or spherical symmetry. These difference equations are

well known and, with minor modifications, are used by the AFSWC'in their

SHARP program and by Aeronutronic in our HOP code. The equations used

include an additional term in the pressure, the von Neumann-Richtmyer Q,

to allow the equations to treat shocks, but the presence of this term un-

necessarily complicates an illustrative discussion.

The conditional stability of finite difference approximations to linear

partial differential equations is well known, having first been discussed by
2

Courant, Friedrichs, and Lewy in 1928. A mathematically rigorous

analysis of the stability of nonlinear equations has never been realized,

although nonrigorous stability criteria have been established which work in

practice. It is found that as Ax, the mesh size, and At, the time interval,

separately approach zero in the finite difference equations, the solution of

the difference equations does not necessarily uniformly approach the solution

of the differential equations. In most cases there must be a functional re-

lation maintained between Ax and At as they approach zero. Normally, it

is found that At must be less than some function of Ax: At < f(o., Ax),1

where cc i represents parameters appearing in the differential equations.
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In our example, the condition is that At < AX_, where c "  1 s
c $~

local sound speed.

The normal procedure in solving the finite difference equations is to com-

pute the quantity f(OL is Ax) for every zone of the mesh, and, at the end of a

time cycle, to use the smallest of these quantities as a time interval for the

next time cycle. It is quite common for f to vary widely over the mesh, either

because o. varies or because of Ax. In our case, the sound speed might beI

much higher in some part of the mesh, or the spatial interval might be

markedly decreased to give better spatial resolution in a particular region.

It is normally necessary, in these cases, to calculate in the main part of the

mesh with a At much smaller than required locally for either stability or

accuracy, and this can greatly increase the computing time required for a

problem. Several distinct approaches can be made to this problem: (1) The

stability condition can be relaxed. A different difference scheme permitting

a larger At or perhaps even Ax can be used. (2) The spatial mesh can be

varied during the course of the calculation to minimize fluctuations in the

time interval. (3) The local time interval can be used in advancing the spatial

mesh.

In the case of linear equations, unconditionally stable finite difference

schemes can be found for most differential equations if implicit schemes are

considered. Comparatively simple implicit schemes can also be obtained for

both Euler and Lagrage hydrodynamic schemes which are unconditionally

stable according to the usual first-order stability analyses. Unconditionally

stable schemes, however, do not remove all restrictions on At, the time

interval. They allow it to be chosen solely on the basis of accuracy. Non-

linear equations like those of hydrodynamics often permit the development of

discontinuities: for example, hydrodynamic shocks. Contact discontinuities

can also occur, even in linear equations. Normally, the difference equations

and spatial mesh are chosen so that these discontinuities are spread over two

or three zones, or a real distance which is as large as can be tolerated for
1

the definition desired in the problem. Let us follow Richtmyer's terminology

and write our differential equation as = Au. Most difference schemes are

based on integrating this in the form

U n+l = n + 1 (Au) dt.
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In a simple, explicit, forward-time-centered scheme, the integral is approx-

imated by (Au) n At, where we have said nothing about the space centering. An

implicit scheme normally approximates the integral by (Au)7 + 1 At (backward

time differencing) or by 1/2 [ (Au) + (Au) 1I At (centered time differ-

encing), and, if the spatial differencing is done properly, unconditionally

stable difference equations will usually result. In most of our problems, Au

represents spatial derivatives of u. As discontinuities travel through the mesh,

these derivatives, taken at a point in the mesh, run from infinitesimal value

through finite value back to infinitesimal value as the variable goes from its

initial to final value. That is, (Au)° = (Au). 0. We may plot (Au). as a

function of time:

(Au) n i

0 tt -H t

T is on the order of two or three times x/s. where s is the propagation

velocity of the discontinuity.

If the time interval is large compared to T we can easily make a large

error in the integration with any reasonable difference scheme. If tn and

t n+ are as shown, any of the three schemes mentioned will give a zero value

for the integral. For any degree of accuracy at all, the time interval must be

less than r, i.e. about I (i ).

In many cases, simpler explicit conditionally stable difference schemes

will permit a comparable At, so that the more complex implicit schemes will

not necessarily permit an appreciable reduction in computing time. Generally,

the time interval in an implicit scheme might be expected to be determined by

that region of the problem where quantities are rapidly varying, for example,

in the vicinity of a shock front. The requirement may be that At h( o j,

Ax). where j is a point in the shock region. An implicit scheme can be very

valuable in cases where h has a reasonable value for most of the problem.

That is, even if a small portion of the mesh is finely zoned for better detail,

this portion of the mesh will only affect the time interval when a shock passes

through it. Otherwise, it is not artificially slowing the computing merely to

keep stability in its vicinity. Another approach which has been exploited in

91



TN-61-29

solving other types of initial value problems, like diffusion problems, is the

use of higher order schemes in the spatial differencing for the purpose of in-

creasing the spatial interval necessary for a given desired definition. Such

schemes have been used occasionally in hydrodynamics to reduce truncation

errors in cases where the mesh size changes rapidly over the mesh, but have

not been seriously exploited in the above sense.

There are many problems of interest where an explicit, conditionally

stable scheme will have a local time interval which varies widely over the

mesh and where the time interval required for accuracy in an unconditionally

stable scheme will always be smaller than desired. In purely hydrodynamic

problems, it has been found to be very profitable to use the local time interval

in advancing the spatial mesh. The following logical scheme permits each

zone of the mesh to have its own time interval, and advances the time by an

arbitrary amount per machine cycle.

At the beginning of a cycle, all points of the mesh exist at the same time.

Generally, after a further sweep through the mesh, the points will exist at

different times. A point is not accelerated if any of its neighbors have not

yet been advanced as far in time as the point in question. If, however, the

point is at a time less than or equal to that of all neighbors, it is accelerated.

The neighbors are relocated temporally by interpolation to the time of the

point in question. Hydrodynamic quantities are calculated at the time of the

point and the point is moved using as a time interval the smallestof the neigh-

boring intervals.

Various special cases may arise. If any of the neighbors is to be ac-

celerated at the same time as the point, the interpolation routine is redundant

and is bypassed for that point. If the time interval is such as to advance the

point beyond the end of cycle time, it is adjusted to just reach this time. No

zone is allowed a time interval greater than the cycle time interval. This

allows inactive points or points with a large natural time interval to be ad-

vanced to the end of cycle time in one sweep. If any of the neighbors(of a

point which has been advanced to the end of cycle time with the cycle time

interval) have not yet been advariced to this time, the inactive point is backed

up to the earliest such time and reaccelerated. This test automatically

activates points when a disturbance reaches them.
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The above scheme has been applied to the Lagrange difference equations

for one- and two-dimensional flow. We shall briefly describe the Aeronutronic

HOP program for one-dimensional flow. This program was originally de-

veloped for use on Bureau of Ordnance contract NOrd 17945, concerning the

detonability of propellants.

The HOP program is best explained by reference to the flow chart.

(Figure 1. ) Location I is the entry point to begin a macro cycle.. Part of the

left hand boundary conditions are set, registers are initialized, and the pro-

gram proceeds to A. At A, the time at which the coordinates of point j exist

is compared with the time for point j + 1. If t. > t. + 1. the program exits

to make an activity test at location M. If t. < tj+ It proceeds to acceler-

ate the point unless it is already at the end of cycle time, in which case
another activity test is made. If t. < tj+ I, xj+ I is recomputed at the time

of point j under the assumption that j+ I was accelerated with a constant

acceleration. If tj M tj+1, this interpolation is bypassed and we proceed

directly to calculate hydrodynamic quantities for zone j+/z at the time of the

point j. If tj = tj+ 1. and if it turns out that we may also accelerate point

j+ 1 during the same sweep, we will not need to calculate hydrodynamic

quantities for the left hand zone when doing j+l. Sense light 1 is turned on to

inform the program that this is so.

Location C is the exit from calculating hydrodynamic data for zone j+1/z.

At this point, sense light 2 is checked. If it is on, it means that hydrodynamic

data for zone j-1/2 at time j already exists. If it is off, t. is compared withJ

tj- l , and in either case hydrodynamic data are calculated for zone j-l/2.

Location D is the exit from the hydrodynamic calculations for zone j-;12. The

program transfers directly to D if sense light 2 is on. At D, the smallest

of the two time intervals At j+I/, and the cycle interval At is chosen as the~C
time interval for the point j. The time is advanced and checked against

tN + . If the new time is less than the end of cycle time, sense light 3 is

turned on as an indication that at least one point has not yet been advanced to

the end of cycle time. The point is then accelerated and a new velocity and

coordinate are calculated.

Sense light 1 is on if the old t. -- tj+1. In this case, sense light 2 is

turned on and the program transfers to B where it proceeds to process the

next point. If sense light 1 is off, t. was less than tj+ l and normally the pro-

J9

93



t Al

I -0
Upa
at (A

Oz m4

w4 !

x A.

K~- 
1 

4 
1

4 I
o a, -

t A 2  t

~o ; IL
Cc 40f

-i IA

AiA

V z a

.4w .it

0
b.94



TN-61-29

gram skips and proceeds to test point j+Z unless tj+ I = t N + I If this is true,

j is stepped by one and control passes to the activity test M. Normally j is

stepped by two and the transfer is to location G where j is checked against

JMAX. If j > JMAX, the program transfers to F to begin a new sweep through

the mesh. If j < JMAX, t. is compared with tj I . If t. > tj I , it is compared
N+l -i - N+ 1with t . If these are equal, the activity test is made. If t. < t , j isJ

stepped by one and the program returns to G. If tj _< tj_ I, the point may be

accelerated depending on tj+1. If j . JMAX, the program transfers to H

where the right-hand boundary conditions are set and an activity test made.

The activity test at location M first compares At. against Atc , the cycle

interval. If At. < At c, the point has actively reached the end of cycle time

and the program proceeds to step j+l and does-the next point. If the two in-

tervals are equal, the program selects the smaller of times t i- and tj+ I .
tN+l, h rga od

If the smaller of these is equal to t N , the program proceeds to do the next

point. Otherwise, the point j is relocated to a time t, where t refers to the

smaller of the adjacent times and At is the corresponding time interval. Point

j is then accelerated.

Location F begins a sweep through the mesh. If sense light 3 is on, at

least one point is not yet at the end of cycle time and control passes through I.
N+1If sense light 3 is olf, the entire mesh has been advanced to time t

Various end-of-cycle tests are made and the cycle time is stepped. The pro-

gram then transfers to I to begin a new macro cycle.

One further departure is made from the standard difference equations.

Since pn+ g (pn+1 n+ ), the time centered energy equation (3') is an
n+ 1

implicit equation as e occurs on the right hand side. If P is a linear

function of e, which would be the case for a polytropic gas, equation (3') can

easily be solved for e n + and an explicit time centered equation obtained.

Even a second order equation has some truncation error. In many problems,

the JPdV must be performed over a change in density of several orders of

magnitude, arriving at a final pressure many orders of magnitude less than the

original pressure which must be given with an accuracy of at least several

percent relative to its final value. It is impossible to get the desired accuracy

using equation (3'). For this reason, we use the equation of state in the form

P . f (p, S). During the adiabatic expansion, S is constant, or at least

slowly varying. For a polytropic gas, P . A(S)p . This is our starting point
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in integrating the energy equation and equation of state. Basically, with

corrections for the von Neumann-Richtmyer Q and for other source or sink

terms, the pressure equation is written as

Pn+ 1 n+ 1 Y

pn

where y is a slowly varying function of P and p which incorporates the degree

of ionization of the material.
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SOME COMMENTS ON CONVAIR'S WORK

ON NUMERICAL METHODS OF FLUID FLOW PROBLEMS

W. F. Brown
C. G. Davis

D. A. Hamlin
A. H. Schainblatt

Convair, San Diego

1. INTRODUCTION.

A discussion of some of the work on Numerical Methods of Fluid Flow

Problems that has been carried out by the Physics Section of Convair-San

Diego will be given. This discussion will include general philosophy, des-

cription of programs, techniques used, and results.

In order to avoid any semantic difficulties, let us state that when we talk

about one- or two-dimensional hydrodynamics we mean one space variable
and time or two space variables and time, respectively. For all other

problems, it will be assumed that they are time independent unless otherwise

noted; thus, when we talk about a one-dimensional non-equilibrium flow, we

mean a time independent flow in one space variable. The areas which we will

cover are one-dimensional and two-dimensional hydrodynamics and plane and

axially symmetric non-equilibrium flows.

2. GENERAL.

It seems appropriate to give a few general statements of our philosophy

regarding machine codes. We attempt a) to prepare our codes so that they

are not the personal property of the individual scientists who developed them;

b) to use, whenever possible, tested techniques; and c) to write our codes in

such a way that they may be generalized but still specific enough to do the

Job at hand in a reasonable time. Furthermore, whenever possible, analyti-

cal and numerical techniques are used in a complimentary way.

Since we will have need of them later, let us now write the hydrodynamic

equations in Lagrangian coordinates. In order to do this, we now represent

the original Lagrangian coordinates of a fluid element as smallxi} ,i a 1. 2,
3, and the Eulerian coordinates as large1Xi} , i . 1, 2, 3.

The Eulerian coordinates which may be considered as functions X i
Xi(x, t). i * 1, 2, 3, give the positions at time t of the fluid elements which
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were originally at xi .

Under the above definitions the law of conservation of mass becomes

V Z h -1(2.1)

70 ---.X., 3
where V x 1/p is the specific volume of the fluid element. Vo is the original

specific volume in the Lagrangian system and in the

3acobian of the transformation tx 3 -b x

We may write the equation of motion as

___ (2.2)2.t2

Our basic set of differential equations are completed by the conservation

of energy, which may be written as

dE -p JV + (2.3)

where E is the specific internal energy of the fluid and S is a quantity which

contains sink as well as source terms.

In order to complete the above set of equations, an equation of state is

needed. One may use for this

P _P (Ev) (.4)

3. ONE-DIMENSIONAL HYDRODYNAMICS.

By specializing the above equations to one space dimension and taking

central differences, we obtain the difference form of the one-dimensional

hydrodynamic equations when Sz 0.

ULM01 - 9,,& M+ - z%[P'2 -p.' 2 Z p, ,,, .,..'.,l (3.1)

Ln%,.a + Lfa
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=.(.,t..< (R.+; ,)o

E>, .  E"2,- LP% :±Rr ' + q+,,
(3.4)

(r M1 r - 1~i)

vL .4"I (35)

Here P is the fluid pressure, a is the "shock width constant," R . X, q

is the pseudo-viscosity pressure term and cC.. 1, 1, 2, for slab, cylinder and

sphere respectively. If we now consider the cas e of an ideal gas, we can
write (3.+4 as

flit -r

C ' WnP., (D Z* (3.5)

wrt ((3.6)

99



Also, for our stability criteria, we have used the White number

2 (ct1 / -4a -

vA + (3.7)

where C is the velocity of sound.

Let us now consider a spherical piston expanding into an ambient atmos-

phere and assume that the flow field external to the piston is represented by

the one-dimensional hydrodynamic equations. We will now consider three

models for the internal flow field.

The first will take the piston as a thin shell with constant mass and given

initial energy. Interior to the mass shell, it will be assumed that PS 0. For

this case, the equations governing the motion of the shell, which we represent

as a mass point, are given in difference form as

f t, - .
%

ML1  (3.8)

wherePn (the external pressure) is found from the hydrodynamic equations

and M is the total mass of the piston.

In the other two models which we have considered to date, an internal

structure is assumed for the piston. The flow internal to the piston is con-

sidered to have a uniform initial density which is sufficiently low that particle-

particle collision can be neglected and an expansion velocity initially given by

LL =L
In the first case, it is assumed that the interface is a membrane and the

internal particles reflect elastically from the membrane. Under these

assumptions, the equation governing the motion of the piston is given by

(3.9)
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Here f and X denote the fractional lag in velocity and position, respectively,

of the actual interface behind the unretarded interface, and t5 is a scale time.

The other case considered assumes that when a particle hits the interface

it sticks to it. In this case, the governing equation becomes

where the variables are defined as before, except that o, is replaced by

0a =6.

Based on the above equations, a series of codes have been written and a

number of cases computed.

The first program solved the case of a spherical piston expanding into a

constant ambient atmosphere. In this code, a fixed number of points were

maintained in the flow field and only the points which were influenced by the

piston motion were calculated. In figure 1, we see the results of some typical

calculations. In this figure, the circled points denote calculations made for

= 5/3 and triangles for 2= Z. As is clearly seen, the variation of

has a very small effect on the solution. Other calculations have been made

for different initial conditions and the results are similar to those shown in

figure 1. Typical pressure and velocity profiles obtained from our machine

calculations are shown in figures 2 and 3 respectively.
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G. I. Taylor has obtained a solution for a piston expanding with a constant

velocity in an ambient atmosphere. From this solution, one can see that over

a wide range of velocity we can represent the pressure on the piston in the form

PC W) t
where c is the velocity of sound in the ambient medium.

This can also be written as

PO -V

(3. 12)
where

To determine r 1 , we make use of numerical results obtained from the

expansion of a spherical piston with constant velocity. These results are

illustrated in figures 4, 5, 6.

Using this form of the pressure, one can obtain an analytic solution for

the motion of the mass shell piston. The results are given in figure 7 and a

comparison is made with a hydrodynamic calculation in figure 8.

Because of the applicability of the fitted pressure, it was decided to solve

the other two piston models using this form of the pressure, but analytical

solutions cannot be obtained as in the case of the shell model, except for the

special case of a constant pressure for which a power series solution can be

obtained. When the pressure equation (3. 1Z) is substituted into equations

(3. 9) and (3. 10), we have ordinary differential equations for the interface

velocity. A program was prepared which integrates these equations and

results of typical calculations are given in figure 9. Also, as part of these

codes, the partition of energy was calculated and results of a typical case are

shown in figure 10, where E 1 denotes the streaming energy, Ez is the kinetic

energy of the shell in the sticky model, E3 is the heat produced in the shell

because of the sticking, and E4 is the work done against the total back pressure;

E and E 3 are not applicable to the reflecting model. For the sticking model,

the total energy is clearly conserved to the accuracy of the calculation. The

total energy for the reflecting model is very difficult to calculate and has not
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Figure 8. Velocity vs. Distance for Expansion of a Mach 6
Spherical Shell into a Uniform Ambient Atmosphere: Com-
parison of Result Obtained Solving Hydrodynamic Equations
with Result of Analytical Solution Assuming Velocity-
Dependent Pressure of the Form P2 /P0  x 1 + p (1U)
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yet been done.

In order to check these results, a hydrodynamic program has been pre-

pared which uses equation (3. 9) and(3. 10). Preliminary results from this

code indicate that the pressure given by equation (3. 11) is still a good approx-

imation. In figure 11, a comparison is given between all three models for the

pressure given by equation (3. 11).

Programs have also been prepared which calculate the expansion into a

non-uniform atmosphere for the three models under consideration. Presently,

calculations are being made. It should be noted that with our present codes we

could calculate piston motion when the internal flow is governed by the hydro-

dynamic equations.

In this work, we have an example of analytical and numerical methods

complementing each other; also, of a machine program being flexible enough

to permit extensions and yet give useful results at each stage of development.

Other problems in this area in which we are actively engaged are hydro-

dynamic flow with radiation. Our present work is limited to radiation diffusion.

Thus, the only difference that occurs in our basic equations is in the energy

equation which can be written in differential form as

8E = - pdV 4 V.(KVe4) + S (3.13)

where K is a function of the opacity, e the temperature, and S a source term.

Our present code is so constructed that the energy equation is solved in a

subroutine, thus permitting different differencing techniques to be used in the

diffusion term and use of different methods of solving the resulting nonlinear

equations. In the present code, the Crank-Nickolson method is used. This is

an implicit method which replaces the diffusion term at n + 1/Z by the average

of term at n and n + 1. The radiation coupling is done by first letting the

radiation flow from n to n + 1 with the hydrodynamics held fixed, and then using

the temperature at n + 1, compute E and P. Now a number of other methods of

coupling can be used but the method presently being used has been successfully

tested and used on similar problems.

In our radiation-hydrodynamics effort, we have an example of a code which

has developed from a fairly simple code to one of some complexity in which the
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first methods being used are tested but the code is so constructed that basic

changes can be made in the code without major reprograming.

4. TWO-DIMENSIONAL HYDRODYNAMICS.

In this area, we have been interested in both pure hydrodynamic as well

as radiation-hydrodynamic calculations.

In order to achieve our goals, we first prepared a hydrodynamic code

modeled after the Los Alamos Magee code. 2 Thus the difference equations

used are

n (P1-,.,4  - .,1 > .,-Y, T , T_,

+ --174i 3 " +Y -, a 0'-- :r + \(. 1

z_ (m,., m,: , -a)(4.1)
n z k .+. +n -.

I(; - - (, - + YES

2 (M-+.3li 1_" 4

.P21",',.,..,,,-, -Y,) ,,, T., +

+ T1 .- PI +,..,) (,, - S:.L' , ( - .-

B.' 0P.,-14.,- _ .11)5
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+ -131  , -2
n (i 

+ nT.

- 7.IA%(jA47.,T - \All( x+ 2 i -

x A+lEU xT PA±A,J (4.3)

T + E V r t - 3

(4.5)

(4.6)

+ ± [(4.(7);
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1,74 (1r~ a -zT- (Yr Sz&y2)]

(yi yn4.i\

I-".+ / (4.8)

t -%

fl-I tI~ z (4.9)

3 ( 7

= + A~b4z (4.11)

n 1 +1, + 
( .0

4 X:
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{ 0

E ln -n 
I 4 . 3

in y+ + ~ (4 . 1 4 )

n14*

-II 
2J~ j

*1- r(4.15
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The acceleration terms are those obtained by the so-called Force Gradient

Method. This code has the feature that the form of the acceleration terms

can easily be changed as well as the equations of state; also, the overall logic

is such as to minimize the time of calculations.

In order to develop our radiation hydrodynamics code, we first prepared

a radiation diffusion code which can be coupled to the hydrodynamics in the

same way as for the one-dimensional case. The basic equation solved in the

radiation code is the energy which when written in integral form becomes

i E1S (4.16)

where Ex C (8,v) is the specific internal energy, i.e., per unit original

volume, c is the flux of radiation across the surface S bounding the element

T0.

By differencing these equations by the implicit alternating direction

method, i. e., for one time step, the equations are differenced implicity in

the X direction and, on the next time step, implicitly in the Y direction. We

obtain " +t.+ n 1/n2-

A ' t, A Gt-1 -,1+1 '-- 4j-l +cl,- C r x ij.a- (4. 17)

n.> 4 - .,, '1Z n+,.VA. + Cn n,_i, Ii.

n+ I n n (4.18)

where the coefficients ) etc. are known functions

of known quantities at time n.

These equations are solved by introducing the well known recursion

relationship
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6& 2 -- Va. n + +1/2-

By substituting these into the above equations, one obtains

ntJ - -1 .- -'. A +1 4,)@L .P+'~ I}b+ 
+ rI,

"- + Z -14 Z*,, (4.20)

bn' -(4.21)-',n b"  /x."

and a similar set for the Y implicit. Using these and the boundary conditions,

one is able to solve the necessary equations. The code used to solve these

contains the same feature as our one-dimensional code and the coupling is

done in the same way as before.

Here again, we have used tested methodsZ but still allow for other methods

to be easily used, and have developed our code in a step-wise manner.

5. NON-EQUILIBRIUM FLOWS.

Let us now briefly turn to the area of non-equilibrium gas flows. We

have chosen as our model that given by Wood and Kirkwood 4 with the further

assumption that we have local thermodynamic equilibrium between classes

of degrees of freedom as well as within these classes. These equations

could also have been obtained by specializing the Kirkwood-Crawford5

equations to an inviscid nondiffusing gas. The equations are

LL +
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(5.3)

T = - I t Ff. (5.4)

The density derivative has been eliminated from the mass equation by use

of the differential form of the caloric equation of state

6t
where we have defined

E~./cC 0 ~:(Y ~(J (5.6)

r (S.7)

/S~7~3 .(frozen velocity of sound)
(frozen expansion coefficient) (5. 8)\3T Jsx}

= (frozen specific heat at
'KaT constant pressure) (5.9)

AqF IJsV (5. 10)

Also p.5 is the specific chemical potential of specie s and v* the specific
5

stoichiometric coefficient for the s specie in the octh.reaction.

In order to complete our set of equations, we introduce the equation of

state for an ideal mixture

R IT (5. 11)

Here Z is the compressibility.

The above equations govern the flow in non-equilibrium. The equations
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for frozen flow are obtained simply by setting v, * 0. It can be shown 6

that the equilibrium equations can be obtained from the frozen equations by

replacing the frozen velocity of sound by C , the equilibrium velocity of

sound, and evaluating all of the thermodynamic functions from equilibrium

thermodynamics. It is easily seen that these basic equations are hyperbolic

in character and that the difference between equilibrium and non-equilibrium

equations is only in the coefficients and added flux type terms. Thus one can

use the usual tools for calculation of hyperbolic equations. Limiting ourselves

to plane and axially symmetrical flows, we find the characteristic relations

to be

-+_ [ i. o e_ u ?, = (5.1 )

where the plus sign denotes the right-running characteristic and the minus

sign the left-running characteristic. Also, the streamlines are character-

istic, i. e.,

LL (5. 13)

The compatibility equations become

('. 14)

where b = 1 for axially symmetrical flows and 0 for plane flows. Another

method is to finite difference the basic equations in such a way that the cal-

culation is carried out using the proper domain of dependence determined

by the characteristics. This has been done but will not be listed here. In

order to carry out calculations using the above equations, one needs the

thermodynamics which for equilibrium can be found in essentially three

different ways, (a) table look up, (b) analytical fits to the tables, and (c)

calculation of the basic equilibrium equations. It has been shown 7 that for
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a wide range of interest air can be represented as a simple gas governed by

the reactions
0 -- 20

. 2- ( (5.15)

N- C0 + N

Also, all the needed thermodynamic quantities can be expressed 8 in terms of

G, the dimensionless internal energy Z and all their derivatives.

Using these concepts, subroutines have been prepared for calculation of

the thermodynamics for equilibrium and non-ecjui.librium. The basic difference

in these subroutines is that for equilibrium the species concentrations are

calculated from the equilibrium equations which are nonlinear algebraic equa-

tions, while for the other cases they are obtained from the kinetics which are

solved as part of the basic flow equations. Codes have been prepared which

use these subroutines and the basic equations for calculating flow fields. It

has been determined that it is wiser to develop separate programs for equili-

brium and non-equilibrium rather than to try to calculate all cases with one

code.

The one basic difficulty introduced by non-equilibrium flows over and above

determination of reaction rates is the limitation placed on the mesh size by

the kinetics. It has been found in some cases that the mesh size must be

taken such that it corresponds to a flow time of a nanosecond. Consequently,

large amounts of machine time must be expended for a calculation. At the

present, we are investigating various methods of reducing the calculating time.
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PROBLEMS OF RADIATION TRANSPORT
49 IN HEATED AIR

Dr. R. K. M. Landshoff

Dr. R. E. Meyerott

Lockheed Missiles and Space Division

Nuclear explosions in the air can be strongly influenced by the emission

and absorption of radiation which transfers energy from one point of the fire-

ball to another or to points in the exterior. The flow of radiation can be

expressed in terms of the intensity I , where I cos PdQdvdtdA is the energy
V V

passing through an area dA, during a time dt, in a frequency interval dv and

coming from an element of solid angle d 0 around a ray which makes an

angle P with the normal to dA. In general, the intensity I V is a function of

position and time, direction of ray, and frequency or wavelength.

Along a given ray, the intensity changes in a manner which is determined

by emission and absorption of the radiation by the material through which it

passes. Such changes are calculated from the equation of radiative transfer.

If the material is in local thermodynamic equilibrium, the equation of trans-

fer is 1

ALv .f PV (B V  ) ds

where (1)

=L V a p K V  (1 - exp (-hv/kt))

is defined in terms of the absorption coefficient K (p, T); s measures the

distance traversed by the radiation along the ray; B - Zhv h -

The mathematical character of equation (1) is well known and leads to

solutions where I V , tends towards B V . If the temperature remains constant

in a large enough region of space rather than changing from point topoint,

i. e., if one has complete rather than local thermodynamic equilibrium, B V

will also be constant and I will become equal to B . This is the situation

within a "Hohlraum" or blackbody, and B is thus the blackbody intensity.V

Equation (1) treats the radiative transfer problem for each instant as if

the density and temperature distributions were held fixed. Such an adiabatic
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treatment is justified because of the high velocity of light.

If the absorption coefficient p v is known as a function of p and T, one can

formally solve equation (1) in terms of the instantaneous spatial distributions

of p and T. ro write this solution down, it is convenient to introduce the

optical depth of a general point P on the ray.

P

TV (P) = V d o

The upper limit P is a point beyond the edge

where the ray emerges from the absorbing

region into the region where 1 V has gone to

zero. The point P 1 shown in the figure also P,

lies in the nonabsorbing region on a section

of the ray which has not yet entered the

absorbing interior. PO

The intensity at a point P is then given by the integral

/ T V 
(PI )

I V B (P' ) exp(TV - Tv ) dT (2)
T V

If I V has been determined for all rays going through a given point, the in-

tegral overall directions

_v dO ,(B -I ) di (3)

is the difference between emitted and absorbed power per unit volume and

frequency and determines the rate of cooling at that frequency.

In principle, carrying out integrals like (2) is quite straightforward but

because of the strong frequency dependence of p V,, extensive calculations at

many frequencies are involved. The difficulty which arises is that, even for

frequencies which lie close together, the major contributions to the integral

for IV may come from widely separated points on the ray. The variation of

the point of origin (i. e. where the integrand in equation (2) is large) with

frequency is particularly severe for transitions between bound states because

they lead to spectral lines where the absorption coefficient is verynmuch
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larger at the center than in the wings.

Until a more satisfactory method has been found, one is forced to use

approximate procedures. It is customary to use smoothed coefficients for

the integration of the transport equation in which the contribution due to lines

is distributed in frequency as if they were broad enough to overlap.

The current status of calculations to obtain the absorption coefficient of

hot air is discussed in considerable detail in a forthcoming article by Meyerott

and Armstrong . Results of such calculations in the temperature range from

1, 0000 K to 12, 0000 K and for density ratios relative to sea level extending

from 10 to 106 have been calculated and are tabulated as a function of wave-
3length between 1, 200 A and 20, 000 A . The actual wavelengths appearing in

the tables are those corresponding to values of hv extending from 0. 625 to

10. 625 ev in steps of 0. 25 ev.

In a higher temperature range extending from 22, 000 0 K to 220, 000°K and

in nearly the same density range as before, absorption coefficients have been

reported by Armstrong, Holland, and Meyerott 4 . The values of hv extend

from 1 ev to 1, 000 ev, I. e. , beyond the binding energy of the last K electron

in Owhich is 871. 1 ev.

A number of assumptions entering into the calculations of absorption

coefficients, such as the use of the Born-Oppenheimer approximation, un-

certain f-values, and the smoothing out prescriptions, make the use of these

coefficients somewhat suspect. One way of testing them for the conditions

where they are intended to be used is the calculation of the spectral distribu-

tion emerging from a nuclear fireball. Such a calculation has been carried

out for a 1-KT airburst with temperature and density profiles taken from the

report by Brode and Meyerott (ref. RM-1851). The results were compared

with experimental spectral distributions observed from such small airbursts.

There is good agreement on features like a sharp peak at 5, 000 A and a

sudden ultraviolet cutoff. By contrast, the computed spectral irradiances

are significantly higher than the experimental values in the infrared region.

This would result if the free-free absorption coefficients had been assumed

too low. Recent theoretical and experimental results confirm that the free-

free coefficients are indeed higher than the ones used in the calculation.

Between the UV cutoff and the maximum of the observed spectral distribution,

one finds a number of discrete spectra. Prominent among these are the 02
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Schumann Runge lines which appear in absorption. Other spectra, such as

N 2 + (1 - ) appear originally in absorption and change some time after the 2nd

maximum to emission. The Schumann Runge bands are of particular interest

because of a very strong sensitivity to temperature. Figure 1 shows the

potential energy curves of the two electronic states of 0 which give rise to

the S-R band system. Transitions from low-lying levels of the X3 zg-

state are severely restricted by the Franck-Condon principle. Levels with

vibrational quantum numbers v like 3, 4, or 5 are much more likely to make

optical transitions, but these levels are not populated until the temperature is

high enough. The relative intensities of the various lines can be used to cal-

culate the population of the various levels. One can then attempt to interpret

these populations in terms of temperatures. At early times in the history of

an explosion, that attempt gives rise to contradictory results, which is an

indication that these states are not present in thermodynamic equilibrium

concentrations. At times around the first minimum the situation changes and

from then on the various levels have a temperature-determined population.

The calculations reported in reference 3 show that the Schumann-Runge

transitions are the dominant contributor to the absoitption coefficient at low

temperatures. At sea level density, this temperature range extends to about

6,0000 K and at 10- 6 times s-I density to about 3, 000 0 K, at which point the

NO bands take over. It is important to note that there is no significant back-

ground of continuous transitions up to temperatures like 5, 000 0 K. This fact.

together with the appearance of bands in the observed spectra from explosions,

indicates that line effects may invalidate the use of smoothed out absorption

coefficients in calculating the radiative transfer of energy.

The Schumann-Runge and other band systems consist of exceedingly large

numbers of lines which are characterized by their wavelength, width, and

some measure of their intensity such as the value of I v at the center of the

line or the integral f V d V. The wave lengths can be calculated for given

vibrational and rotational quantum numbers of the upper and lower state,

v' i and v" J , with the aid of constants given by HerzbergS . The line

widths are determined by pressure broadening and are assumed to be pro-

portional to the pressure with a constant of proportionality which has been

calculated by Margenau. The integrated absorption coefficient
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2

f d N9 t  v SJi (4)

line
requires a knowledge of four variable factors as follows:

1) The population Nvt Ji of the lower level, which is assumed to be

in thermal equilibrium and therefore obtained from the Boltzmann

distribution

2) The electronic f value, which for 02 (S-R) is assumed to be

f - 0. 048 as given by Treanor and Wurster6.

3) The Franck-Condon factors g v' ' as given by Fraser, Jarmain, and
7

Nicholls
4) The line strengths S i, , as quoted on page 208 of reference 5. The

integral given in equation 4) and the maximum Lm at the center of the line

are directly proportional to each other. The factor depends on the line shape

and varies like the line width A v . Figures 2 and 3 show the envelopes of

various bands at 1,000 0 K and at 3, 0000 K.

Figure 4 shows the fractional transmission for several thicknesses x of

air of a number of lines in the (5-5) band. It is important to notice how these

lines become wider with increasing thickness. For very thin samples the

absorption a. vx would be proportional to the thickness but this increase di-

minishes as the absorption becomes larger. Thus, the centers of lines where

the absorption is the largest grow less strongly than the wings, and this makes

the lines become wider. Since the absorption at the line center approaches

its full value in a relatively thin sample, the major contribution to the trans-

mission comes from the wings and the average transmission depends critically

on the minimum of At

The procedure of integrating the transport equation, so as to develop as

much detail as shown in figure 4, is quite laborious and with more than

10, 000 and possibly as many as 100, 000 lines the amount of computation would

be prohibitive. There are, however, certain regularities which can be readily

noticed on inspection of band spectra, which suggest a simpler modification

of the above procedure. Figure 5 shows the densitometer trace of a typical

band spectrum attained with a high resolution Meinel spectrograph. The

point which we want to make is that the average absorption changes quite

slowly with wave length. The fact that figure 5 is an emission spectrum does

130



TN-61 -29

600

00
00

InI

o 0

0 N U)

100

00

too

7 0

0.
0-4

co 04

131



TN-61 . 2 9

00

NoN
co i

132.



TN-61-29

404.m

0 L0

00

0

E.
U)

00

bm ,
C! OD

d Ci c lq4 P

0 d O0

133



TN- 61-29

tWUL 4im1aoffm< emm. Rim WgUlyaMUIU EIITU ALL

0W I

Flgm S. Donestmter trais of Ns of 12,000OK and 0. 124 3. 250A-4070 A -------

1.3S



I~eT~chR MR InC301-" _RI _omm a urkuf iUMITI1STU

:7-7 a



AF=W, Si 4UCUHEU< MIR 10 K HkIUTU&

- -- E-

_ _ -- - - - - -



4 L - , L
_

not affect this argument since the ratio of emission and absorption is also a

slowly changing function of wave length. The gradual change of absorption

suggests that it may be sufficient to solve the transport equation properly in

a small number of fairly narrow frequency intervals such as the one shown

in figure 4 and use these results to obtain averages for the entire spectrum.

A machine code to do this has been written and has been very nearly

checked out. Details, such as optimal values for the width and the number of

intervals, have to be found by experimenting with this code. It is estimated

that an interval may contain an average of 20 and certainly less than 200 lines,

and that there may be a total of 20 such intervals.

The general procedure then is as follows. For a given time in the history

of the explosion at which density and temperature profiles are known, one can

obtain densities and temperatures along any ray through the fireball. One can

therefore calculate absorption coefficients along such rays for the selected

frequencies within each one of the narrow intervals. By integrating the trans-

port equation, one thus obtains the intensities Iv which are then averaged for

AVV

each narrow interval to form T' ... /1 Idv " The next step is to inter-

polate TV with respect to frequency, and some work is currently underway to

devise a good procedure for doing this. The interpolated I is then integrated

over the entire spectrum to form
Co

I i d . One can now calculate the cooling rate / d..- dQ, enter
/ V V*d

this into the energy equation, and advance the hydrodynamic calculation.
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NUMERICAL METHODS

FOR HYDRODYNAMICS WITH RADIATION TRANSPORT

Dr. R. A. Grandey
Aeronutronic Division, Ford Motor Company

1. THE EQUATIONS OF RADIATION TRANSPORT.

The integrodifferential equations of radiation transport are obtained by

simultaneously solving the time dependent Boltzman transport equation for

the radiation, which is a continuity equation, and the equation expressing

overall conservation of material plus radiant energy. The energy equation

is written in the formdEr+ + V__ + F -- o.
J t + C t at

Here E is the material energy density, E the radiation density, P the totalm r

pressure, V the specific volume and F the net flux of radiation. The third

and fourth terms of this equation are expressed as integrals, over frequency

and direction, of the Boltzman equation.

The Boltzman transport equation gives the time rate of change of intensity

of radiation of frequency v traveling in a direction . This intensity will be

a function of time and position:

where ro is the position vector and t the time. The transport equation may

be written generally in the following form:+ ( ,. Tq} I,, -+ ,# ,, pj,,

The left side of this equation represents 1/c times the total time derivation of

vw" The first term on the right represents photons removed by absorption

y (a)

processes, K v (a) being the absorption coefficient. The second term on the

right represents photon production by emission from the material, the third

term those photons lost by scattering, and the fourth those added by scattering

from other directions. W , into the direction W. In this equation P is the
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material density, jV, wthe emission coefficient and K ( scattering coefficient.

Our problems will assume slab or spherical symmetry, in which case

I is a function of only one coordinate x and the angle 0 between the di-

rection of symmetry and the direction of travel of the photon in question:

Ivw = Iv, w(Xt, y.e) = I YA (xit, ,

where p. = cos e. We may write equation (1) as

C t Ka A I .,V.

K is the total "absorption" coefficient, i.e. , the sum of the pure ab-

sorption and pure scattering coefficients. or= 0 or 2 for slab or spherical

geometry respectively.

The net monochromatic flux, F , traversing unit area is a vector in the

x-direction with magnitude Ztc / I . p. d L . The total flux F is defined by

the Fvdv or:

fF F8 a ffJ dA4 (3)

0 -I

The radiation energy density is the integral of IV Ii over direction and

frequency, i. e.

EafJ,A4 (4)
0 -a

Thus the energy equation may be written as:

ff )t4
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The transport equation is applied to assist in evaluating the integrals appear-

ing in this equation.

The term j e i n the transport equation represents both spontaneous and

induced emission. Its form is sensitive to whether or not local thermodynamic

equilibrium exists for the material. If local equilibrium is assumed, it may

be expressed in terms of the absorption coefficient K V (a) and the Planck

spectrum. By combining this with the absorption term, equation (2) becomes

=f' AU " I (6)

a ) ),T (S
,vI 0(['()I11

eIK ,,,('I,, /ArL ' e r d¢jIv V,

+ j'e K S(A)A 91

In our problem, scattering may often be ignored in comparison with the

emission process. In this case,

c" t + a- x ' (Ie""

(7)-3IPAL_- JY- y"
Generally, we must solve equations (5) and (7) subject to the appropriate

boundary conditions. Introduce an integrated intensity
oo
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by integrating equation (7) over dv:
oo (8)

X zx au dv

where Xt . the transport mean free path. is defined byA,, 0 A Y v

and a is the Stefan-Boltzman constant. The second term in equation (5) may

be eliminated by integrating (8) over d -

"( f, I,..,,,J'.r,,sd ,, -4
c ..,' -d a,J o- AY d04d

CI -I

Our problem is to solve equations (8) and (9).

All equations are linear in the radiation intensities. Let us therefore write

the monochromatic intensity as the sum of two terms: one including radiation

due to material at a local temperature T. and the other radiation coming from

an external source in transit through the material. The first term will include

radiation flowing into the material from neighboring material not necessarily

at exactly the same temperatue. That is, define I I , + ,

I a IP + IE , where the superscripts stand for Planck and external, and write

separate continuity equations for the two components:

(10)
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(11)

Specializing to the case of or = 0 for simplicity, the energy equation (9) may

be written as:

tJ~m_ Pciv(12)A-'-'q ]p d z

0 -

-, ,T,, d = o.

The diffusion approximation for the Planck spectrum is obtained by assuming

that p K (a) is very large, or that X V is small compared to dimensions over

which quantities vary appreciably. In this case, an expansion of IP  as a

power series in p converges rapidly. The result of such an approximation is

the usual diffusion equation; plus an additional term involving IE

00 1 (13)
SL F paTq9..e.p-d- -& ~xA')-CfJ.,I £'

where X r, the Rosieland mean free path, is defined by

,,brO ' T Cl, y

In several applications, it may be possible to make use of equation (13) in

treating the Planck radiation, using equation (11) to treat the transport of

external radiation through the material. In cases where the diffusion approxi-
mation is not valid for the Planck spectrum, a second appreciable simplifi-

cation is still possible. Returning to equation (7), the right hand side of this

equation may be written X 1( ) The integral of the first term
V VO 11 V14 1
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of this expression led to introduction of the transport mean free path, Xt * It

is seen to be appropriate to use this same mean free path as an approximation

in equations (10) and (12) in the term involving IP:

.1 _ 0 ~ P) (14)

-' (- - VY dIA dY (
=0

We shall have to follow the changing frequency spectrum of I E  in time as it
V9 L

transports through the material. The number of frequency groups necessary

and the expense of treatment will depend on the shape of the spectrum and the

precise dependence of X on v.V

Inclusion of the pure scattering terms and the extra terms for the spher-

ically symmetric case do not introduce any difficulties and have been omitted

only for convenience in the discussion.

2. NUMERICAL INTEGRATION OF TH E TRANSPORT EQUATIONS.

Three approaches have been taken toward solving the transport equations.

The chief problem is treating the angular integration. An immediate extension

of the diffusion approximation is to use higher order terms in 1, or, equiva-

lently, to expand I () in Legendre polynomials, since one can then make use

of the various recursion and orthogonality relations existing. This approach

leads to a set of L + 1 equations for the Legendre coefficients if polynomials

up to order L are used in the expansion. I may be defined by an L + 1 com-

ponent vector consisting of the Legendre coefficients and finite difference

methods applied to the resultant vector equation. The coefficients in the vector

equation are L + I by L + 1 matrices. The difficulty of this so-called

"Spherical Harmonic Method" is that an implicit difference scheme is required

for unconditional stability and the scheme must be implicit both with respect

to the space coordinate and the "I coordinate," yielding very cumbersome

equations.

A second approach is based on the "method of discrete ordinates." The

distribution function is sampled in each of a finite number of directions, and

144



TN-61-29

separate equations written for the individual directions. The two approaches

are related, inasmuch as if L + 1 discrete angles are used for sampling, the

solution can be fitted with the first L spherical harmonics. Wick and

Chandrasekhar developed this approach independently using a Gaussian quadra-

ture approximation for the angle integrals. It can be shown that the results

from this approach are identical to results of the spherical harmonic method.

This method, which uncouples the equations angularly, is much more

tractable than the spherical harmonic method if it is desired to obtain un-

conditionally stable finite difference equations.

3. THE CARLSON S METHOD.
n

The Sn method is also a discrete ordinate scheme in carrying out the
integration over angle. It differs from the Wick-Chandrasekhar (W-C) method

in several respects. The centering wth respect to I. is done differently and a

trapezoidal rather than Gaussian quadrature is used to perform the integration

over angle.

The S method divides the 4 interval into n subintervals: -1 o < 11 (
" -

n 2
" - < Ln a + "  If Pi + /n ,the p-mesh is said to be standard. Other

choices may be appropriate to some problems.

In the W-C method, the transport equations are centered at the p -mesh

points. Sn centers these equations at the midpoint of the p -intervals:

P ,,I

C ,k lL,/1

This set of n equations in n + I unknowns is completed by adding the

equation centered at i x o ({p -1):

(16a)
P P

" ax
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Assume that IE may be represented by K frequency groups

E K

I E 1, and write separate transport equations analagous to

equations (16) and (16a) for the K components: 1Z

I k,JI. J * YX -J4 1L

-A ,,(o <J)

'L ,, -
4Ic..-A'T (17a)

The number of angular groups required for accuracy may be different for

I and IE . It is planned to allow for using an SI integration for the Planck

spectrum and an Si integration for the "external" radiation.

3. 1 The Sn Difference Equations.

Equations (17) and (17 a) will be used to illustrate Carlson's differencing

methods. A more complicated procedure is required if anisotropic scattering

(like Thomson scattering) is included but we shall not discuss this in the

interests of simplicity and time. We shall drop the K subscript for simplicity.

Equation (17) is written in terms of the intensities at p -mesh points J and

J+ lby performing an integration over p under the assumption that the intensity

I is linearly dependent on j. in the interval (a trapezoidal approximation):

'A=-~ + (I _,-

.--- ,
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at ta t ".i-"q._

The above are introduced into equation (17) and an integration performed over

P from lj-1 to Pj. We note that

i-

where: a - tq.s-,)

Introducing these into equation (17) and multiplying by 2/1.:

(18)

(17a) simply becomes:
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Normally, in spherical systems the radiation streams in the direction of

increasing p. The angular dependence is treated by arguing that the differ-

encing should be backward with respect to the direction of flow. It is on this

consideration that equations (16a) and (1 7 a) are for t = -1 rather than for

a + 1. Equation (18a) is solved for I which is inserted into the equationo

involving I and I which is solved for II, etc.

We shall now introduce spatial coordinates X which define a spatial mesh

with an interval A m X -X m and the temporal coordinates t which define a
1+1 I

temporal mesh with an interval bE = t .-t . Let us examine equations (18)

and (18a) centered at time t and at the spatial coordinate Xm:

ttt

000'  x\3-, I

8'' 3 It

x,. aiC~tJA X-aji~ .a, . x-

- _Am

Photons arriving at point X at time t started from a point on the line tm
a distance acb from point e. They traveled along path 1, Z. 3. or 4 depending

on the value of acb. The spatial and temporal derivatives occurring in equation

(18) are formed along the appropriate legs of the triangle traversed by the

photons in question. For example, if the photons follow path 1 (if acb > Am),

the _. appearing in_(18) is differenced as
x Qi(tx 

_,)
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and the t al€,tI;x I; (t', x..) - i(t', x,_)

The result of the above will be an implicit finite difference equation for
9+ 1 '1+1

I (t I X ) I. Generally, similar equations will exist for eachj m j,m
frequency group, and it will be necessary to define I k, , m

It should be noted that the transport equations are coupled angularly through

the scattering integral and, in the case of spherical symmetry, through the

term U Z 6 In slab geometry with no scattering the equations are not

coupled angularly and an Sn -type calculation would not be required.

A third approach was mentioned. It is also possible to write the angular

dependence in an integral form and apply iterative techniques which will con-

verge to the correct solution
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SHOCK-INDUCED REACTIONS*

Dr. 0. A. Nance
E. H. Plesset Associates, Inc.

In discussing the possibility of shock-induced reactions in condensed

phases, we find that even reliance on the weak reed of chemical reaction

theory eludes us. We can only hope to avoid the nonsequitur that experi-

mental evidence provides many examples of this phenomenon.

The framework of gas phase reaction kinetics is dually supported, by

thermodynamics and by the "absolute" rate theory. Classically. reactions

are supposed to occur by "activation" of a molecule through collision or ab-

sorption of radiation. If the activated molecule simultaneously or subse-

quently encounters another appropriate molecule, a bimolecular reaction

may occur. Alternatively. the activated molecule may decompose in a uni-

molecular reaction. To various degrees of sophistication, we may calculate

the number of collisions occurring as a function of concentration and tempera-

ture.

Calculation of the rate of reaction from the number of collisions alone

usually leads to a gross overestimate of the rate. The next level of approxi-

mation requires an estimate of the energy involved in collisions and an esti-

mate of the probability of transferring an effective amount of energy to one

of the colliding particles. The first formal expression is due to Arrhenius

and takes the form k = Ae " Ea/RT ' where k is the specific rate constant. A

is a frequency factor and E is the energy of activation. This expressiona

was inherently an empirical description of the variation of reaction rate with

temperature. "A" can be related to the number of collisions but with only

indifferent success except in the case of simple bimolecular reactions be-

tween atoms.

If we add the concept of the Maxwell distribution, we gain the concept of

the fraction of molecules capable of undergoing effective collisions and the

concept of at least a quasi-equilibrium state which will maintain the popula-

tion of "hot" molecules. Use of this new information improved the calculation

* This report is based on preliminary results of work sponsored by the

Richfield Oil Corporation. Potential applications to petroleum technology

are subject to patent rights sought by that Company.
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of the frequency factor in simple cases but gave no clue to the predictability

of the energy of activation.

With the advent of the absolute rate theory, a major practical advance

occurred; unfortunately the quantitative gains and theoretical validity were

severely limited. In this theory we consider a potential energy surface rep-

resenting the reacting system in the pertinent region of configuration and

momentum space. One assumes a quasi-equilibrium distribution of the macro

state with respect to this surface and examines those portions of the potential

energy surface with which externally recognizable chemical changes may be

correlated. In the customary notation, we write

k J(kT ) AS Re- AH /RT = kT Q e -AE8/RT

Where k is the specific rate constantr
T is absolue temperature

h is Planck's constant

AEo is the difference in "ground state" between normal and activated

species

Q represents a partition function

AStis the entropy of activation

AH represents part of the energy of activation

The superscript f refers to the activated species and the subscript

refers to the quantity after the "reaction coordinate" is removed. The pro-

duct of Qi over "i" is necessary when several reactant species are involved.

It will be necessary to refer the reader to standard texts or reference works

for discussion of the development of these expressions.

The point of outlining the background briefly here is to permit a dis-

cussion of the situations in which misapplication is possible. The first set

of terms defines the rate in thermodynamic variables; this is of value pri-

marily in recognition of the source of a temperature dependent and a tem-

perature independent term, together with clues to the application of

statistical mechanical concepts. One will note that the factor k- appears

in both expressions and that it has been borrowed from AH in one case

and from Qt in the other (noted by demotion of the symbol $ to a subscript).
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In the second expression, the partition functions are taken with respect to

a ground state in each case and the ground state factors are combined in the

term e" 6E8 In addition, the partition function has been depleted by the

factor kT; this factor is usually interpreted as the partition function of the

"reaction coordinate", treated as a very "stiff" vibration. That is, it is

assumed that an important characteristic of the activated complex is the

occurrence of an appropriate amount of energy in a "degree of freedom" of

the complex such that motion in that one coordinate can produce the observed

macroscopic reaction. In terms of the potential energy surface, motion in

this coordinate leads from "reactant" to "product" portions of the energy sur-

face. Roughly speaking, AE ° , is the least upper bound of the energy required

to surmount the potential barrier and thus is in excess of the quantities AH

or E a which are averages of the energy barrier from a given level to the

transition level, weighted by the energy distribution for the reactant species.

For gas phase reactions of simple species, the partition functions may be

approximated and estimates may be made of the partition functions for postu-

lated activation configurations. Furthermore, we have a reasonable idea of

the use of temperature, both to describe the energy partition and to calculate

the number and effect of collisions. We can also estimate the effect of pressure

on the rate of reaction and on the distribution of products, if several reaction

paths are possible. Increasing the pressure on a gas raises the temperature

and increases the concentration of reactant species; it also increases the

probability of deactivation and, unless the activated complex is more compact

than the separated reactants, may lead to increase or decrease in reaction

rate, depending on the specific reaction mechanism.

In the gas phase, the probable collision orientations and transfer of energy

between degrees of freedom is also somewhat amenable to treatment. In

particular, the energy content is not readily exchanged between translation

and either rotation or vibration, i.e., there is difficulty in transferr-ing -

translational energy and there is a corresponding persistence of vibrational

excitation when it does occur. The effectiveness of vibrational energy in

complex molecules is complicated as well by the possibility of delocalizaticon

and localization which arises from anharmonic contributions to the potential

functions.
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Statistical theory of .transport.

The fundamental questions which apply here simply emphasize the limita-

tions of reaction theory in general. One of the fundamental difficulties here-

tofore has been that theories predicting reaction rates have postulated equili-

brium states and used thermodynamic expressions more from desperation

than sagacity. A fruitful and logical point of attack must lie in the larger

question of description of the approach to equilibrium and irreversible pro-

cesses in statistical mechanical terms.

In attempting to predict kinetic processes we are attempting to assess

the behavior of perturbed regions, molecular aggregates, or individual

molecules in a macroscopic system which may be at or near equilibrium.

This point has long been recognized, e. g., Kirkwood made significant contri-

butions and was, at the time of his death, a leader in this technique of

approach.

It was the author's original intent to discuss nonequilibrium theory in

some detail but it became increasingly obvious that such a discussion was

impractical under the circumstances. The reader who wishes to pursue the

matter is referred to an excellent review article by S. A. Rice and H. L.

Frisch which appeared in vol. 11 of the Annual Review of Physical Chemistry

(pps. 187 - Z72) (Ann. Reviews, Inc. , Palo Alto, Calif. - 1960) or to recent

papers by Kirkwood and his collaborators, particularly S. A. Rice.

Reactions in condensed phases.

With the foregoing discussion in mind, great audacity is required in ap-

plying the theory of gas phase reactions to condensed phases and shock phen-

omena. To the extent that shocks can raise the local energy content sub-

stantially, we can begin to consider reactions in terms of the general theory.

Activation leading to unimolecular reactions can probably be accomplished by

collisions between neighboring atoms or molecular groups. In the sonic

approximation, the transfer of energy to vibrational modes of a crystalline

structure is known to'be an effective means of energy transfer and we would

expect individual species to be subjected to periodic disturbances. Since these

disturbances have periodscharacteristic of the lattice modes, the coupling to

h. atomic vibrations of much higher frequency would be of comparatively low

efficiency. In the transonic and strong shock regimes, the efficiency of

transfer should appreciably increase. Furthermore, loss of bond vibrational
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excitation should be inhibited by the factors which by-passed molecular

excitation in the sonic case. Some measure of the vibrational excitation can

be obtained In gases by observing the dispersion of supersonic waves; there

it is observed that vibrational excitation by one or more quanta can be ob-

tained in the range of 10 2 - 10 5 sound-induced collisions. In solids, the situ-

ation is more complicated, theoretically and experimentally, but it has been

observed that the lifetime of vibrational excitation is of the order of 10 - 9

seconds in many cases.

The partition functions for an organic material should be markedly differ-

ent in gaseous and condensed phases because in condensed phases:

1. the translational modes are strongly coupled to the lattice modes;

2. the rotational degrees of freedom are severely restricted by the

limited free space in condensed phases;

3. the vibrational modes of molecules probably have higher effective

anharmonicity because of the intermolecular force fields, but are

sufficiently different in frequency from the lattice modes to have appre-

ciably different energy content;

4. there is a high degree of degeneracy in the lattice modes.

The entropy of activation in the gas phase may be considered in two parts.

The first of these arises from the relative orientation of the colliding mole-

cules at and during collision, and the second derives from configurations

assumed during the free oscillation and rotation subsequent to the collision.

In the case of condensed phases, both sources of variation of orientation are

severely restricted by the nature of the state, particularly in cases where

mechanical treatment or preferred bonding configurations are present during

reaction or fabrication of the material.

By analogy with phenomena observed following irradiation of molecular

aggregates, the predominant reactions appear to be unimolecular dissociation

and reaction of activated sites with neighboring atoms or groups. A special

case is that in which hydrogen atoms, produced by bond rupture, combine

locally or diffuse to react at sites somewhat distant (usually 100 angstroms

or less) from the point of origin.

Conventional reactions. A

With the differences noted, it should be possible to treat reactions in
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condensed phases by the same broad theoretical treatment and some tech-

niques parallel to those used in gas phase kinetics. The temperature is now

replaced by the internal energy of the material (with due regard to potential

difference in partition functions); the expected duration of the reactions is

that of the pulse duration plus one or more characteristic relaxation times

which might be distinguishable by variation in product distribution.

The orientation factors are fairly stable and might be treated either by

straightforward probability theory for isotropic material, or by considerations

of random orientation plus the concept of crystallites familiar to workers in

the field of plastics. Since some control over samples is possible, one might

be able to use variation in sample fabrication to vary reaction rate and mech-

anism in experimental studies.

Experimental clues.

The facilities required for study of shock-induced reactions in condensed

phases are not readily accessible. One requires instrumental bunkers in

locations fairly remote from living areas, a supporting staff capable of

sophisticated manipulation of high explosives, and rather elaborate sample

containers which can survive the shocks and preserve the samples for post

reaction analysis. Needless to say, the experiments are also rather expen-

sive.

Some work has been done in support of the "Plowshare" program by LRL

and some work has been supported by the Richfield Oil Corporation at SRI.

There are also scattered bits of data which come as by-products of military

programs.

One can summarize the available data crudely as follows:

1) severe decomposition of organic materials is produced in times of the

order of microseconds by shocks of 250 kb or higher;

2) limited changes in materials occur in the same time intervals down to

the order of 20 kb.

Calculation program.

Preparation of a numerical machine code is underway in support of this

program. The code consists of a conventional Lagrangian hydrodynamics

calculation supplemented by auxiliary sections for reaction calculation. For
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materials in which reaction is possible, the logic of the hydrodynamic calcu-

lation is interrupted at the point where the pressure and internal energy have

been calculated.

Two possible types of reaction have been provided. The first type is a

"slow" reaction for which the rate equation has a unimolecular form and the

rate constant is written in superficial Arrhenius form, i. e., the rate is first

order in concentration and the rate constant consists of the product of a con-

stant and an exponential function of internal energy. During each time cycle,

the differential change in concentration and energy is calculated for the pre-

dicted reaction and the results used to correct the hydrodynamic quantities.

In the event that changes produced by the reaction are comparable to changes

produced by the mechanical factors of the shock, an additional iteration is

required. In the cases investigated to date, the energy absorbed or produced

by the reaction is a small percentage of the total and no additional references

to the hydrodynamic portion are required. It is obvious, however, that highly

endothermic or exothermic reactions could materially affect shock propaga-

tion. A limiting case is that encountered in detonation of explosives, in which

the reaction energy is the mechanism for generation of the shock. It may be

noted in passing that some of the difficulties in the theory of detonation which

have been ascribed to state behavior are probably due to neglect of the effect

of high pressure on the reaction rate.

Some preliminary calculations have been made on the effect of an under-

ground nuclear explosion on petroleum bearing formations. An underground

nuclear explosion is characterized by initially high attenuation of peak pressure

with distance, because of both geometric and energy absorption factors. At

the same time it is characterized by persistence of pressure which is greater

by several orders of magnitude than the impulse duration of conventional ex-

periments with high explosives. Using reaction constants derived from con-

ventional petroleum technology, the calculations indicate extensive chemical

reaction in regions near the detonation with a sharp decline in the amount of

reaction at distances where the peak pressure is below about 100 kilobars.

This result is to be expected because of the conservative approach in assign-

ing reaction parameters, but the results compare well with the limited ex-

perimental data.
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We have also proposed that there is probably another type of reaction

accompanying shocks and which we have designated the "fast" reaction. It

has been observed in shock tube experiments and in detonation of explosives

that the observed rate of reaction is frequently higher than that predicted by

the theoretical "temperature". J. von Neuman commented on this point in

discussing detonation theory of explosives and remarked that the behavior

seemed more like tha-t resulting from a mechanical blow than from thermal

excitation. He had calculated a reaction rate by a method comparable to our
"1slow" reaction and found the predicted rate to be less than the observed rate

by a factor beyond that which could be explained by parametric ranges avail-

able in his theory. Unfortunately, he did not pursue the point.

We have made provision for this second type of reaction in the code but

have not used that section, pending further theoretical work. One can, how-

ever, discuss some possibilities in phenomenological terms. One postulates

that, as the shock strength increases, there is a point at which the particle

velocity exceeds that for which the predominant energy transfer is to bulk

modes of the material (lattice modes for crystals or crystallites). The effect

would then be to transfer increasing fractions of the dissipated shock energy

to vibrations of the molecules. On the basis of dispersion of supersonic waves,

there is the indication that bond vibrational excitation persists with character-

istic half-life of the order of 10- second. With vibration periods of the order

of 10 - 1 3 second, there is ample time for reaction or internal transfer of the

vibrational excitation. Since unimolecular decompositions are the result of

localization of energy in vibrational modes, the effect of relatively direct

transfer of shock energy to vibrational excitation would produce reaction

rates far higher than those predicted on the basis of the bulk "temperature"

of the material. At present, quantitative prediction of the effect seems

impossible, and consideration of secondary factors such as the effect of

orientation seems pointless except for speculation. Nevertheless, there is

a possibility that recognition of the qualitative features of such a reaction

might permit the design of fruitful experiments.

From the standpoint of the use of a hydrodynamic code, these considerations

emphasize the limitations of a formulation which uses the Richtmyer - von

Neuman "Q", since the region of the shock front which is so grossly dis-

torted by the use of an artificial viscosity is Just the region in which
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accelerated reactions would occur. In addition to consideration of experiments

to establish reaction parameters, we are considering known and pursuing novel

techniques for treating the shock front phenomena in condensed phases. At

present, we have no significant contribution to report.
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CALCULATION OF SPALL BASED ON A ONE-DIMENSIONAL MODEL

Mark Wilkins
Lawrence Radiation Laboratory

INTRODUCTION.

Consider a one-dimensional model of an HE metal plate system. Since the

pressure pulse from the HE at the HE-plate interface decays rapidly with time,

a rarefaction wave proceeds forward into the plate, degrading the advancing

pulse from the rear. Upon reaching the front surface of the plate where the

normal stress must be zero, the pressure pulse is reflected as a receding

rarefaction wave. This wave drops the pressure pulse from its initial value

to zero; the rarefaction wave proceeding forward is already dropping the

pressure such that when the two rarefactions cross the pressure falls below

zero. The negative pressure or tension will be related to the amount the

pressure has dropped behind the initial pulse when the rarefaction from the

front surface has reached a given position. In figure 1 the tension will be

approximately the pressure drop "h" that has entered the material before the

receding rarefaction has reached the metal-HE interface and a pressure pulse

has been transmitted back.

If either the magnitude or rate of increase of tension is great enough, the

plate may fracture or spall.

THE CALCULATIONAL MODEL.

The one-dimensional hydrodynamic equations were solved by the finite

difference technique of Von Neumann and Richtmeyer. The tension profiles

for three different plate thicknesses were calculated using a high-speed com-

puter together with an assumed equation of state and a method of simulating

the burning of HE. The equation of state of the metal in compression was

obtained from experimentally measured Hugoniot points. However, in the

tension region, a Hooke's law of the form P a a(f -1) was assumed. Here

Pois the reference density expressed in gins per cc. A perfect gas law

equation of state was used for the HE. 2

Since the finite difference approximation is based on a Lagrangian de-

scription, the physical quantities of each mass element are known at any

instant of time. Consequently it is possible to allow the material to split at

a zone boundary by introducing the appropriate free surface boundary
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conditions. By this technique material separation or spalling may be

achieved when the tension falls below a specified amount. Other spall cri-

teria based on strain rate, internal energy, momentum transferred, etc.,

may be easily introduced.

EXPERIMENTAL TECHNIQUE.

To measure the front surface velocity of HE-driven plates. the usual pin

technique and optical methods were used. The experiments used 10cm of

Composition B ignited by a plane wave generator. The other dimensions

were chosen to maintain a one-dimensional model during the time of interest.

To measure the change in velocity of the front surface of a metal plate, a

magnetic method was developed. The plate is the conductor advancing

through parallel magnetic field lines. The voltage generated per unit length

of the plate is described by

V. voltage

L = length of plate
v velocity

B = magnetic field

In order to measure the voltage and hence the plate velocity, two small

wires are placed normal to the plate. As the plate advances into the wires,

contact is maintained and the voltage as a function of time is recorded on

oscilloscopes.

DISCUSSION.

By examining a plot of the front surface velocity time history of the plate,

successive accelerations may be discerned. The time interval between con-

secutive pushes is equal to the transit time of a receding rarefaction wave

plus the time of a compression wave. From the previously determined

equation of state of the metal, the shock velocity at the pressure given by the

HE can be calculated. The velocity of the rarefaction wave is very nearly

equal to the shock velocity, so an easy calculation gives the time interval be-

tween consecutive accelerations of the plate front surface.

The time interval calculated from this simple model agrees with the

solution given by the difference equations and also with the experimental

results for thin metal plates. As the thickness of the plate increases, the

time between consecutive accelerations is longer than the calculated times.
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It is assumed that the plate has spalled or fractured and the previous simple

calculation is no longer valid. A complete analysis of the wave interactions

together with a criterion for fracture verifies this assumption. The results

of the finite difference calculations which take into account the spall phenome-

non correctly predict the time intervals between accelerations found experi-

mentally.

Intuitively, increasing the thickness of the plate should have the following

effects:

1. -A larger part of the rarefaction wave could enter the material.

Z. The pulse shape is changed, causing higher strain raters.

3. The time which a specified plane in the plate is under tension will

increase because of the increase in transit time.

Any of the above mechanisms may cause the maximum dynamic strain in

the plate to be exceeded, thus allowing the material to fracture or spall.

Other forms of the equation of state in the negative pressure region as

well as different spall criteria have been investigated on the computer. The

simple model presented here illustrated the effectiveness of the computer as

a method of analysis.

RESULTS.
Figures 1. 1A; Z, ZA, and 3, 3A illustrate the results of finite difference

calculations which do not contain a spall criterion and the corresponding

experimental results. Figures 1 and 1A show the results of 10 cm of HE

driving a 0. 375 cm thick uranium plate. The agreement between the experi-

ment and calculation is good and it is concluded that the plate did not spall.

Figures 2, ZA, and 3, 3A show the corresponding results when the plate has

a thickness of 0. 545 cm and 0. 75 cm. For these cases the acceleration times

as measured by experiment do not agree with the calculated times. The con-

clusion is that the material has spalled and momentum can no longer be trans-

ferred. Thus the spalled portion of the plate flies off with the momentum

characteristic of the pressure from the head of the original shock minus the

amount of momentum transferred back by tension before spall occurred.

The decrease in front surface velocity between accelerations shown by

the calculations results from the tensions in the plate. Experimentally this

is not seen, since only average velocities are measured in the time interval

between accelerations.
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The calculations were repeated using a spall criterion of -0. 50 x 10

i. e. , the material was allowed to separate if the tension at any point
cm
in the material exceeded this amount. Figures 4 and 5 show the results of

these calculations as compared to experiment.

Similar calculations using other thicknesses of plates, and a spall criterion

based upon tension of about -. 050 x 101 Z agreed with the experiment.

The assumed equation of state in the region of negative pressure and the cri-

teria for spall used are certainly not correct in every detail; however, the

overall good agreement with experiment is justification for applying the tech-

nique to other HE metal plate systems.

CONCLUSION.

As stated in the first section, spall results when two rarefactions cross.

An obvious method to defeat spall would be to cancel one of the rarefactions.

To accomplish this a void can be placed between the HE and the metal. The

transmitted shock into the material now has a rising profile instead of a pro-

file that falls behind the shock front. Figures 6 and 6A show the results of

calculation and experiment where a 1. 5 cm void was introduced between the

0. 75 cm plate and the HE.

The experimental methods, while accurate for measuring the changes in

front surface velocity, only give average velocities during the intervals be-

tween accelerations. It would take separate experiments to establish the

slowing down of the front surface as predicted by the calculations. Experi-

ments of this type are presently being conducted.

(This document was originally released
as UCRL 6356)
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DYNAMIC LARGE DEFLECTION OF SHELL STRUCTURES

Dr. W. Herrmann

T. H. H. Than

J. W. Leech

Aeroelastic and Structures Research Laboratory
Massachusetts Institute of Technology

The problem considered concerns large deformations of shell-type

structures subjected to non-uniformly distributed intense loads of very short

duration. A brief review will be given of the methods and assumptions on

existing dynamic analysis of elastic and plastic structures.

Where the impulse is sufficiently low, only elastic deformations result.

The problem of lateral motion (normal to the shell surface) is somewhat more

difficult than that of the longitudinal motion. In the case of elastic deforma-

tions. the equation of lateral motion involves a fourth-order differential equa-

tion while the equation for longitudinal motion involves only a second-order

differential equation.

Transient solutions of lateral elastic motion can be obtained by the

classical normal mode solution or by the wave solution. When the duration

of the applied dynamic load is not too short, the normal mode method is the

suitable choice. However, for problems which involve discrete pulse loads

of very short duration, the convergence of the normal mode solution becomes

questionable and the wave solution must be adopted. It has been shown, how-

ever, that if elementary beam theory is used the resulting flexual wave

propagation leads to dispersion. The resulting phase velocity is found to be

inversely proportional to the wavelength. For a wave of infinitely short

wavelength the propagation velocity is infinite. One can thus conclude that

elementary beam theory is inadequate for short impulsive loads because it

leads to the physically impossible conclusion that disturbances are propagated

instantaneously, throughout the beam. Refinements to elementary theory

have been made by Rayleigh and by Timoshenko by taking into account the

rotating inertia of t ie beam cross section and the transverse shear deforma-

tion. From this improved theory it can~be shown that there are two types of

waves propagated along the beam, one of which involves bending moment and
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cross-section rotation while the other involves transverse shear force and

lateral displacement. The two groups are traveling at different propagation

velocities but they are coupled with each other, and the shape of each wave

changes completely. The coupled wave equations can be solved by the method

of characteristics.

Studies of plastic deformation of beams caused by lateral impulsive load-

ing are of recent origin, having been initiated in this decade. Most of the

studies have been based on simple beam theory with the moment-curvature

relationship being considered as elastic-plastic (figure 1. a) or rigid-plastic,

(figure 1. b) and the plasticity being described generally as either perfectly

plastic (figure l. a and b) or as linear strain-hardening (figure 1. c).

Analyses of elastic-plastic beams have also been made by using the

normal mode approach. In this analysis the solution must be divided into

individual phases. When the bending moment at any point reaches the yield

bending moment, M0 . a single plastic hinge is formed and in the subsequent

period the beam must be considered as two elastic beams connected by the

hinge. By considering the proper continuity-relations between displacements

and velocities at the joint, the solution can be established.

Solutions of lateral motion of plastic beams have also been obtained using

the wave propagation approach. The solution by Duwez, Clark, and Bohnenblust

is based on simple beam theory while the solution by Plass is based on an im-

proved theory taking into account the rotational inertia and the shear deforma-

tion. These authors, however, consider only the problem of a semi-infinite

beam subjected to a lateral disturbance at one end.

All the work on plastic beams to date has emphasized the permanent

deformation due to the impulsive loading. For the cases where the plastic

deformation is much larger than the elastic deformation, the simplified

rigid-plastic analysis is justified. From the basic assumption of negligible

elastic strain it can be concluded that the motion of the beam involves only

rigid body motions of various beam segments which are connected by plastic

hinges. This type of analysis was first developed by Lee and Symonds and

was followed by other authors. A simple example using rigid-plastic analysis

is given in the following.

Consider a simply supported beam acted on by a uniformly distributed
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impulsive load p(t). (Figure 2) When the applied load is3 small, such that

the maximum bending m jment is less than the yield bending moment, the beam

remains rigid. The maximum bending moment which occurs at the mid-span

is equal to 2. Thus when p . 8 M° , a plastic hinge is formed at the mid-
-pe- 7TZ

span. If the applied load further increases, the beam will move with two rigid

segments rotating about the end supports. The magnitude of the angular

acceleration of the rigid segments must be such that the bending moment at the

mid-span is maintained at M 0 From figure 2 we obtain
0

P.1- m'1 3  • M
8 24 0

243
or 8 o

When the impulsive load is increased continuously, a point will be reached

when the location of maximum bending moment begins to spread outward from

the mid-span point. This is the third phase of the motion, when two plastic

hinges begin to appear and the beam will move with three rigid segments. Two

of these segments rotate about the end support while the segment at the center

undergoes uniform translation (figure 2. f. ) The plastic hinges are moving

away from the center when the load is increasing and they are moving toward

the center when the load has been released. The rigid-plastic analysis involves

essentially the determination of the motion in the various phases until the ve-

locity of the beam becomes zero everywhere, and the final plastic deformation

can be evaluated. The propagation of the plastic hinge in the rigid plastic

analysis is not of the same nature as the propagation of elastic or plastic waves.

In the present case, there is, in fact, no inertia associated with the moving

plastic hinge.

Another refinement of the plastic beam analysis is the inclusion of the

axial load effect on the yield bending moment. For a beam restrained at both

ends from longitudinal displacements, axial tensile stress is developed when

the deflection of the beam becomes larger than the thickness. For a rigid-

plastic beam of rectangular cross section the magnitudes of the bending moment,

M, and the axial force, N , at the yield condition are related by the following

interaction equation:
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.,.+ / N
0 No

where M = yielding bending moment when the axial load N is zero and

No U yielding axial load when the bending moment M is zero.

It can be seen that in the initial phase where the deflection and the axial

load are small, the plastic work involves essentially bending at the plastic

hinge. However, when the deflection increases, the axial tensile load also

increases, and the plastic work will involve mainly axial strain. instead, of

bending strain. In the limiting case where the axial load becomes equal to

N , the beam becomes a plastic string under constant tension No . (Thus

this last phase must be treated differently). Such an analysis was made by

Symonds and Mentel. A treatment of a low arch under lateral load was made

by Chen, Hsu and Plan. In the latter case axial compressive stress is de-

veloped when the arch deforms inward.

All of the previously described plastic theories apply to small deflections

in that geometrical nonlinearities are excluded: and in addition, they make

further simplifying assumptions, either neglecting elastic effects by assuming

rigid-plastic behaviour, or considering only infinitesimal deflections for which

the axial (membrane) stress is negligible.

Extension to large deformations involves not only the introduction of

axial (membrane) stresses but additional nonlinearities caused by the geo-

metrical effects. The resultant equations require numerical solution. It was

decided to retain elastic effects in this analysis since certain evidence was

found to suggest that the energy stored in elastic strain in certain deformed

shell configurations is not negligible. In particular an appreciable amount of

energy appears to be stored in elastic strain in circular cylindrical and

spherical shells when these have been deformed to the order of half the radius,

as may be shown by cutting the shell at some convenient location and measur-

ing the work required to close the gap.

The method of solution requires setting the equation of motion for the

shell, written for large deflections, together with the stress-strain relations,

in finite difference form. The resulting initial value problem is solved,

subject to the boundary conditions describing the constraints on the shell. The

load may be introduced as a varying boundary condition if the loading is of
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relatively long duration. Alternatively if the load duration is very short, and

the structure does not deform appreciably during the time of load application,

the load may be characterised as an impulse, giving rise to an initial velocity

distribution in the shell.

Initially only cylindrical shells (rings) are being considered, thus elimin-

ating one space dimension. The ring need not be initially circular. The shell

may also be open ended, with appropriate end constraints, and therefore

equivalent to a curved beam.

The equilibrium equation in finite difference form may be described in

physical terms as follows. The ring is considered to be composed of a

number of links joined by hinges. The links are assumed rigid in bending but

elastic-plastic in extension. The hinges are considered to be inextensible,

but elastic-plastic in bending. The mass of the ring is divided into discrete

masses concentrated at the hinges. (Figure 3.)

As in the finite-deflection analysis of Symonds and Mentel, mentioned

previously, there is an interaction between bending moment and axial force

at the yield condition. For the elastic-perfectly plastic stress-strain relation

used here, the interaction equation cannot be written simply, for a rec-

tangular cross section. Particular difficulty is experienced when stress

reversals occur. The difficulties are circumvented by idealising the cross

section into an I beam (or sandwich plate) of equivalent force and moment

carrying capacity. The flanges are considered to behave in an elastic-

perfectly plastic manner, and a relatively simple relation between extensional

strain and curvature, and axial stress and moment, can be found.

Since stress reversals may occur, and unloading will occur elastically, a

multivalued relation results, the correct relation depending on the previous

loading history. It is therefore necessary to provide the correct logic in the

program to keep track of the loading history, in order to choose the correct

relation between the axial stress and strain, and the moment and curvature.

Preliminary results for the case of a beam subjected to a uniform initial

velocity indicate that traveling hinges are formed, as in the rigid-plastic

case of Lee and Symonds. It is anticipated that the program will give insight

into the failure modes to be expected in various configurations, and information

about the relative amounts of energy absorbed in elastic and plastic deformation,
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Figure 3. Finite difference model for shell
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MOTION OF AN ELASTIC HALF-SPACE

Dr. C. M. Ablow

Dr. Roy C. Alverson
Stanford Research Institute

Underground shelters are designed to withstand the motion of the earth

under blast loadings caused by explosions on or above the earth's surface.

A first approximation to that motion is obtained by computing the small

motions of an isotropic elastic half space under circularly symmetric applied
tractions. Features of the motion of major importance are preserved by a

computing method which accurately predicts the strength and time of arrival

of the first seismic shock. Such a method is at hand when shear and com-
pressional wave motions are separated and independent variables are constant

on wave fronts, i. e. when characteristic coordinates are introduced.

For axisymmetric motions of the elastic half space a cylindrical co-

ordinate system (r, T,z) is appropriate. It is assumed that there is no ro-
tation about the axis so that all functions appearing are independent of 'P. It

is then known 1 that the equations of motion and of Hook's law may be reduced
to the solution of two equations for two potential functions ; and P, function

4 determining the compression and function P the shear:

rr + (Pr/r + q)zz

rr + @ r/r + e - 0/r 2  2

where a ( + 210/p P, • *s/p, X and It are the Lame elastic parameters,

and p is the density. Although the reduction to the above form is carried
through in the reference only for constant X, p, p, the same manipulations
are permissible if X varies as a function of z. Thus the present analysis

holds for an earth of constant density and shear wave speed but compression-
al wave speed varying with depth. Displacements in the radial direction, u,
and in the axial direction, w, are determined by m and 0 to be

Ua -0 , w* zT+ + 0/r
r z z r

1 W. M. Ewing, W. S. Jardetzky, and F. Press, Elastic Waves in Layered

Media, McGraw Hill, New York, 1957, Chapter I
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If the surfaces in (r. z, t) space on which function f is constant are shear

wave fronts then f is a solution of the characteristic equation

f a 2 (fr + f 2)

Fundamental shear wave front surfaces are the right circular cones with

arbitrary vertex, axis parallel to the time axis, and half vertex angle arc

ctn P. It may be shown that any shear wave front is an envelope of such

cones. For the characteristic coordinate surface Z a 0 there was taken the

envelope of cones with vertices on the line marking the leading edge of the

disturbance on z a 0. the surface of the earth. The location of Z - 0 in

(r, z, t) space marks the progress of the initial shear disturbance throughout

the medium.

The two other characteristic coordinate planes a . 0 and S 0 were

taken as the surfaces representing plane waves parallel to the surface of the

earth, being at that surface at time zero, and. respectively, going out into

the earth or returning from the depths. Thus i a 0 is one planar envelope of

the cones with vertices on the r-axis in (r. z, t) space while 6 * 0 is their

other planar envelope.

The same definitions give the a = 0, b u 0, and c z 0 characteristic sur-

faces for the compressional wave equation, except that the variability of a

with depth distorts the right circular cones into surfaces of somewhat similar

shape called conoids.

To obtain a complete coordinate system in (r. z. t) space, the surface
* k was taken as the Z a 0 surface moved k units parallel to itself in the

direction of the t-axis, and similarly for the other coordinates. Analytically,

if f(r. z, t) is that solution of the characteristic equation for which f(r. z, t a

0 represents the E * 0 surface, then the equation for c * k was taken to be

f(r, z, t-k) z 0.

It is evident that there is a high degree of arbitrariness in the choice of

characteristic coordinate system. The choice made above makes coordinate

planes of the initial compressional and shear wave fronts and also provides

simple plane surfaces in characteristic space for the surfaces r = 0 and

z 0 on which boundary conditions are applied as well as the surfaces

t . constant on which the computed output is conveniently displayed. Further,

on the boundary z - 0. where compressional and shear waves satisfy combined
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conditions, one has a a, b -, and c so that there is no interpolation

problem.

Characteristic surface

Physical surface for compression for shear

Initial wave c = 0 c 0

r= 0 a z c a.c

z: z0 a b

t a t1  a +b 2t+ 2t1

Setting

Ta a A, Ob B, qPc SC,

e-* A, .B, and e- * C
c

permits the second-order potential equations to be replaced by the first-

order systems

4Ab + 2(ac z + OA c -2(ac z - 1)B c - a2V2cC . 0

A B, Bc Cb,
A b a B a  B c  C

and

4A6 + + )AZ - 2(P - 1)B - 72;E + p/r 2 . 0

Bz a

where the first set of equations replaces the potential equation for the di-

latational waves and the second set replaces the potential equation for the

shear waves. In these equations V c stands for c rr + C r /r + c zz' and it,

as well as the other quantities appearing, needs to be expressed in the char-

acteristic variables before the integrations can begin.

Finite difference approximations to the differential equations have been

written using a cubical lattice in each characteristic coordinate system. As

is to be expected with a hyperbolic system In characteristic form, the equa-

tions are explicit, the solution is obtained by a process of marching through

the nodes of the lattice, and stability of this process i assured.
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The initial wave fronts, being coordinate surfaces, are sharply defined

in the finite difference calculation. No jump condition is needed across the

wave front as the proper discontinuity is preserved in the finite difference

forms.

The finite difference computation will smear sharp loading or unloading

waves behind the initial front unless they fall along a characteristic co-

ordinate surface, i. e. , are plane waves parallel to the surface of the earth

or are waves of the same speed and extent as the initial wave delayed in time.

The main disadvantage of the characteristic method is that three co-

ordinate systems need to be carried along together, (r, z, t), (a, b. c), and

Displacements, velocities, and stresses in three different models of the

earth under airburst loading are being computed and will appear in forth-

coming reports. The three models all consider the earth as an isotropic,

elastic, half space. In the first model the half space is homogeneous, in

the second it is homogeneous with a homogeneous overburden, and in the

third the compressional wave speed varies linearly with depth.
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GENERAL COMMENTS ON

NUMERICAL INTEGRATION SCHEMES

Dr. John G. Trulio
Lawrence Radiation Laboratory

With regard to the numerical integration errors inherent in the von

Neumann-Richtmyer equations, and the effect of these errors in spall calcula-

tions,* I would like to make the following comments.

First, as stated, the linear Q has the effect of eliminating oscillations be-

hind a shock. It introduces much more damping than the quadratic Q. When

velocity differences from zone to zone are not large, squaring them tends to

produce Q's so small as to be ineffective for damping oscillations in density,

etc.

However, a basic problem in describing rarefactions is that any signal

which does not move with the velocity of the grid will diffuse. This appears in

the rounding of the head of a rarefaction wave, and throws the timing off in

rarefaction interaction problems. For most problems this is not a very im-

portant effect. However, it is important in any code calculation of the depth

of spall, which is one of the main Jobs of the (Boeing) code.

If a shock arrives at a free surface, the head of the reflected rarefaction

wave may be 6 to 8 zones deeper in the material than it should be. (The

error in the position of the rarefaction head is, of course, characterized by

a fixed number of zones, and not a fixed distance. ) An error of 6 or 8 zones

is not serious if there are 600 zones in the spalled piece, but there is ordin-

arily a limit to the number of zones in these problems - a practical limit in

calculation time. Also, a method which requires on the order of 1. 000 zones

to produce an acceptable solution to a one-dimensional problem is perhaps not

the right method to use on the problem. For that reason, other methods are

being investigated.

The various numerical integration procedures have application to a series

of experiments which have been, and are being, carried out to investigate the

*Butler, Guining, Jr., and Young, Daniel M., On the Treatment of Rarefaction
Using a Dissipative Hydrodynamics Code

Wilkins, Mark, Calculation of Spall Based on a One-Dimensional Model
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mechanism of the spall process. The purpose of the experiments is to de-

termine whether or not the spall mechanism is time dependent. The experi-

ments are based on the scaling laws of hydrodynamics, as described in the

proceedings of last year's meetings (AFSWC-TR-60-12). In each experiment,

one plate is driven at another plate. The absolute plate thicknesses are varied

from experiment to experiment, keeping constant the ratio of plate thicknesses

and the relative velocity of the plates before impact. Then the pressure dis-

tribution in the plates is the same in each experiment at corresponding positions

wid times. Therefore, if there is no delay time to fracture, one should observe

threshold spali for the same relative velocity of the plates, regardless of their

absolute thicknesses. So far, this does not seem to be the case, although we

have drawn no firm conclusion as yet. Several sets of experiments have been

done, for three or four plate thickness ratios. Results have been obtained both

by exploding foil and air gun techniques; they agree rather closely.

If the spall mechanism is time dependent, then, in order to calculate the

depth of spall, etc., as part of the problem of motion, it will be necessary to

build into the code the experimental delay time to fracture, as a function of the

applied stress. For stresses and strains outside the linear elastic range, the

deduction of this delay time from the experimental data leads to the further

problem of determining the stress-strain relation for large tensile stresses.

If spall occurs instantly at a fixed tensile stress, the appropriate code modifi-

cation is much simpler. In either case, a quantitative empirical (or semi-

empirical) account of one-dimensional spall will result from experiements of

the kind described. A technique for integrating the equations of motion is

therefore acceptable only if it allows us to make full use of this knowledge to

predict the occurrence of spall, the depth of spall, and other details of the

spall process. On this basis, the equations of von Neumann and Richtmyer,

unmodified, are inadequate.

I would like to comment also on an accuracy limitation inherent in any

numerical scheme which integrates the hydrodynamic equations by stepwise

advances in time. Many attempts have been made to increase the accuracy of

the equations by "high-order differencing. " That is, the difference analogs

of the hydrodynamic equations are written in such a way that the error in-

troduced in a dependent variable in a single timestep is of high order in the

sense of a Taylor's Series expansion in powers of the space- and time-steps.
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Efforts in this direction have had very limited success to my knowledge. There

is, I think, a simple and basic reason for this: quite apart from shocks and
contact discontinuities, the solutions of the equations of motion are not analytic

for flows of even moderate complexity. For example, in one-dimensional

motions of practical interest, the x - t plane is criss-crossed by curves across

which the first derivatives of the sound speed or particle velocity with respect

to x or t are discontinuous. Then the introduction of high-order differences

into the difference equations can actually bring about a decrease in this accuracy

of the equations, because the derivatives to which these differences tend in the

limit of fine zoning are infinite at various points in the flow. Although the

truncation error in a single time-step is reduced at most points by high-order

differencing, the error introduced at the relatively few points on the singular

lines of the flow can more than offset the gain in accuracy elsewhere. It seems

that second-order accuracy is about the most that can or should be asked of a

general purpose hydrodynamic code which operates through stepwise advances

in time. To get around this difficulty, and thereby write rapidly convergent

difference equations, one must see to it that differences are never taken across

singular surfaces of a flow in the space-time continuum. Since the singular

surfaces are characteristic surfaces (apart from shocks and contact discon-

tinuities), the difficulty is overcome by using a set of characteristic coor-

dinates as independent variables. This, it seems to me, is the basic reason for

the much more rapid convergence obtained by differencing the equations in

characteristic form. However, the use of the characteristic equations for

numerical purposes has its own difficulties, especially in the treatment of

shocks and contact discontinuities, and in two or three space dimensions.

Since the flow of a compressible fluid is a problem in wave motion

(although nonlinear), it is natural to examine the question of accuracy from the

point of view of a Fourier expansion as well as a Taylor's Series. Along these

lines, the simple problem of linear wave propagation relative to a coordinate

mesh has been studied. For concreteness, the motion can be thought of as the

uniform translation of a bar of material with variable density and zero pressure.

through an Eulerian grid. The difficulty is that the density is known basically

at the Eulerian zone centers, while the mass flux needed to calculate changes

in density must be defined at the zone boundaries. There are many ways in

which the mass flux terms can be calculated from the basic densities, each
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corresponding to a particular construction of a complete density profile from

the basic discrete density field. Apart from some trivial cases, different

definitions of the mass flux will produce different cycle-by-cycle density

changes. Thus, instead of the correct undisturbed propagation of a density

profile, the density profile will be distorted in the numerical calculations. It

is worth noting that this transport problem appears whenever a disturbance

propagates at a finite speed relative to the coordinate system used to describe

it. In a Lagrangian frame, the problem arises for sound wave propagation.

One simple definition of the density used to calculate the mass flux at a

zone boundary is the so-called "backward" definition, i. e., take the nearest

zone-centered density in the direction corresponding to the tail of the velocity

vector at the zone boundary. If this definition is used, it is found that the

amplitude of an 8-zone sine wave decays by a factor of 10 by the time the wave

has travelled two or three wavelengths relative to the grid. A cycle-by-cycle

analysis of the results shows clearly why this rapid diffusion takes place; the

point will not be pursued here. The rate of diffusion decreases as more zones

are used per unit wavelength, so that the problem centers mainly on short

waves.

To do a better job with sine-wave propagation, another simple definition

of the transport density was adopted. This is the so-called "centered" defin-

ition, i. e., the zone-centered densities on either side of the zone boundary are

averaged (a small correction term is added for purposes of numerical stabil-

ity). With this definition, the 8-zone wave propagates with very little distortion

and no noticeable diffusion. However, if the density profile is a step function,

then the centered differencing scheme quickly leads to a train of large oscilla-

tions behind the step. The growth of these oscillations is easy to understand

by following the calculation time-step by time-step. The initial spurious dis-

turbance is a zone-by-zone oscillation. Thus, the problem again centers on

the description of very short wavelengths. In a finite difference grid, the

shortest possible sine wave is spread over four zones. These shortest

waves, and even somewhat longer ones, are very coarsely defined, and do not

propagate correctly through the grid. To eliminate errors from this source,

an obvious stratagem is to suppress selectively all sinusoidal components

shorter than some predetermined wavelength, without disturbing the others,

One way this has been done, according to Dr. Cecil Leith at Livermore, is

184



TN-61-29

a

actually to Fourier analyze the whole signal and subtract out the unwanted

components. We have another scheme that accomplishes essentially the same

thing - waves spread over any particular numbers of zones can be damped out.

By suppressing the saw-toothed waves, all oscillations are wiped out but the

first two, for a uniformly translating step function. The amplitude of the first

oscillation behind the step is only slightly reduced, while the amplitude of the

second oscillation is about halved. By suppressing the waves whose half-width

is three zones or less, the second oscillation is eliminated, and the amplitude

of the first oscillation is reduced by about a factor of 5 (relative to the

amplitude characteristic of centered differencing with no suppression). At the

same time, sine waves propagate exactly as in the case of centered differenc-

ing. The method is therefore fairly satisfactory for wave propagation in a

finite grid.

The wave propagation study was undertaken largely to provide a means of

handling the transport terms which appear when the equations of motion are
written in a non-Lagrangian coordinate system. The treatment of transport

resulting from this study has been put into a code which describes the one-

dimensional linear motion of a single material with two Lagrangian boundaries,

one of which is not allowed to move. Between the boundaries at any given time

are a fixed number of zones of equal width. The grid is therefore neither

Lagrangian nor Eulerian; the zone boundaries do not move with the particle

velocity and they are not fixed in space. The most interesting problem run on

the code to date is that of a steady shock and its reflection from a rigid wall.

The error in the pressure behind the transmitted shock is about 50 percent

greater than the error using the von Neumann- Richtmyer equations. This is

actually better than it looks because the mass of a zone increases severalfold

in crossing the shock. Only as the shock nears the rigid wall do the zone

masses behind the shock approach their initial values; in the von Neumann-

Richtmyer scheme, the masses do not change at all. When the shock gets

close to the rigid wall, the zoning in the unshocked material is much finer than

at the start of the problem, and the error in the reflected shock pressure is

considerably less than in the von Neumann-Richtmyer case.

It can be seen that there are some very simple and fundamental problems

which have not been solved adequately in the past - at least in the sense that

the method of characteristics affords an adequate solution. In view of the
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'machine time spent on hydrodynamic problems, it would appear that a good

deal more investigation of the difference equations themselves is in order, 4
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